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Problem Formulation: Blind Deconvolution (BD)

o Consider the linear measurement model

h e RE:
e c RM:
y € R":
w e RV
E ¢ RV¥L:
H e RVM.

y=hxe+w=He+w=Eh+w,

Point spread function (PSF).

Excitation.

observation.

Noise (N =L+ M —1).

linear convolution matrices corresponding to e.
linear convolution matrices corresponding to h.
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Some Examples

@ Debluring: Blurring filter not known.
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Some Examples

@ Debluring: Blurring filter not known.

@ Point source blurred due Gaussian PSF with unknown parameters.
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Some Examples

@ Debluring: Blurring filter not known.

@ Point source blurred due Gaussian PSF with unknown parameters.
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@ Linear speech production model: Factorize voiced speech into vocal-tract filter and
excitation.

Speech production e

model —> Vocal tract filter i f—pr
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Objective and Typical Issues

Objective @ Develop a sparse blind deconvolution (SBD) algorithm to estimate h
and e from y.

Assumption: e is a sparse vector and h is a smooth and stable
operator.
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Objective and Typical Issues

Objective @ Develop a sparse blind deconvolution (SBD) algorithm to estimate h
and e from y.
Assumption: e is a sparse vector and h is a smooth and stable
operator.

Typical issues @ Infinitely many solutions to the BD problem. Need priors on e
and/or h to reduce search space.
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Objective and Typical Issues

Objective @ Develop a sparse blind deconvolution (SBD) algorithm to estimate h
and e from y.
Assumption: e is a sparse vector and h is a smooth and stable
operator.
Typical issues @ Infinitely many solutions to the BD problem. Need priors on e

and/or h to reduce search space.
@ The formulated cost function is non-convex, thus leading to local

minima issues.
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Our Contribution

o We formulate the SBD problem using the MAP formulation.
°
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Our Contribution

o We formulate the SBD problem using the MAP formulation.

@ Propose an alternating minimization algorithm for the problem.

Aniruddha Adiga (Department of Electrical EngineerinAn Alternating Projections Algorithm for Sparse Blind 5/14



Our Contribution

We formulate the SBD problem using the MAP formulation.

Propose an alternating minimization algorithm for the problem.

We show that for well-conditioned systems, the pseudo-inverse solution is a good
initialization.
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Our Contribution

We formulate the SBD problem using the MAP formulation.

Propose an alternating minimization algorithm for the problem.

We show that for well-conditioned systems, the pseudo-inverse solution is a good
initialization.

We analyze the convergence property of the algorithm.

We show application to deconvolution of voiced speech signals.
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MAP Formulation for BD problem

@ h: deterministic but unknown.

o e: i.id. generalized p-Gaussian distribution 8
(epG). s2
2
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(¢) (2r(1/p)70e> P Z <70e W2 o 2
20 =
where v = (Fg;g;)l/z and 0 < p < 1 (Heavy-tailed S;O.B
distribution). <10 —p=05
@ The MAP estimates of the vectors h and e S
are 94 -2 9 2 4
20,
(hmap, emap) = arg max f(y/e;h)f(e), 15 30
’ ) 10 25
_ ; p
= arg min_|ly — Hellz + Alle]l; . s %
F(he) 0 15
° \ 10
@ The joint cost F(h,e) is non-convex and not S — 3

straightforward to optimize.

@ We resort to alternating minimization.
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An Alternating ¢, — ¢ Projections Algorithm (ALPA) |

e-step: h-step:
Fix h Fix e

arg min F(h,e) arg m}i]n F(h,e)
Update h

e-step: eV = arg min F (h(k),e) =arg min |y — H®e|3 4+ )[e|l?,
e e

@ For 0 < p <1, F(h e) is non-convex.
o V.F (h(k),e) has a discontinuity at e = 0.
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An Alternating ¢, — > Projections Algorithm (ALPA) Il

Iteratively reweighted least-squares (IRLS)

o Majorize ||e||5 with weighted £>-norm function and minimize the cost iteratively.

8UTH = arg min [y — H®e|3 + e Wre
e

Fe (h(k)ae)

, : A=
where WYX = diag (p ((é,-(J’k))2 + e)p ) .

o Final e-step solution (after J iterations of IRLS): e(kt1) = &k,

—il
e(k+1 ((H(k)) (H )_,_)\W(J,k)) (H(k))Ty,

o Use e(**1) to update h**) = arg min F. (h,e("“))_

h-step solution: | ™) = arg m’iln lly — E("“)h”g = E("“)Ty,

p(krD) — RlHD) /et 2 ‘
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Initialization: Pseudo-inverse Solution

@ A good initialization might ensure we are in the “right” local minima.
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@ A good initialization might ensure we are in the “right” local minima.

o Initialization: Given some initial filter estimate h, how good is the regularized
least-squares solution ( W®? = 1)?
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Initialization: Pseudo-inverse Solution

@ A good initialization might ensure we are in the “right” local minima.

o Initialization: Given some initial filter estimate h, how good is the regularized
least-squares solution ( W®? = 1)?

o If true excitation and filter are e* and h* respectively, h = h* — h and
pseudo-inverse solution is denoted €gis. The difference

5eB|_s = e* — éBLS = H*T(w — 6He*),

where §H = Conv. mtx(éh).
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Initialization: Pseudo-inverse Solution

@ A good initialization might ensure we are in the “right” local minima.

o Initialization: Given some initial filter estimate h, how good is the regularized
least-squares solution ( W®? = 1)?

o If true excitation and filter are e* and h* respectively, h = h* — h and
pseudo-inverse solution is denoted €gis. The difference

5eB|_s = e* — éBLS = H*T(w — 6He*),

where H = Conv. mtx(dh).
o What is the probability of +||depLs||1 exceeding a value £?
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Initialization: Pseudo-inverse Solution

A good initialization might ensure we are in the “right” local minima.

Initialization: Given some initial filter estimate h, how good is the regularized
least-squares solution ( W®? = 1)?

If true excitation and filter are e* and h* respectively, 6h = h* — h and
pseudo-inverse solution is denoted €gis. The difference
6e3|_s = e* — éBLS = H*T(w — 6He*),
where H = Conv. mtx(dh).
o What is the probability of +||depLs||1 exceeding a value £?
K202

(€ — wlloH]2]le*[|2/vVM)?

1
P <M\|5EBLS||1 > 5) <

x = condition number of H*.
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Convergence Guarantees for ALPA
Behaviour of the majorized cost function F (h,e):
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Convergence Guarantees for ALPA
Behaviour of the majorized cost function F (h,e):

o After e-step,
Fo(h®, e 0) < F, (W, e®))
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Fo(h) ey < F, (h(k)7e(k)) .
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Convergence Guarantees for ALPA
Behaviour of the majorized cost function F (h,e):

o After e-step,
Fo(h®, e 0) < F, (W, e®))

o Similarly, after h-step,

Fo(h) ey < F, (h(k)7e(k)) .

o After one cycle of ALPA, (both e-step and h-step)

Fo(h®D, &) < £ (h, &)

Behaviour of the original Cost function F (h,e):

: (k) O :
o With ¢ updated as €/ = ¢ <max & D , with0<cx1,

F(n0,e00) < F (h9, ).
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Deconvolution of Voiced Speech Signal

@ 30 ms vowel segment /ae/ (female speaker),
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Figure: (a) Speech samples (sampling rate 16 kHz); (b) LP residue (MO 20); (c) ALPA estimate of the filter; (d) ALPA estimate
of the excitation, (e) frequency response of the estimated filter; and (f) comparison between the original vowel segment shown in
(a) and that synthesized based on the estimated filter and excitation.
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Comparisons with state-of-the-art

Comparisons with Smooth ¢1 /£, blind deconvolution (SOOT)!, sparse linear prediction

(SLP)? and MM-based Sparse Deconvolution (SDMM)3.

LA. Repetti et al. “Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed £ /£5 Regularization”. In: IEEE Signal Process.
Lett. 22.5 (2015), pp. 539-543. DOI: 10.1109/LSP.2014.2362861. eprint: 1407.5465.

2D, Giacobello et al. “Sparse Linear Prediction and Its Applications to Speech Processing”. In: IEEE Trans. Audio, Speech, Language
Process. 20.5 (2012), pp. 1644-1657. 1ssN: 1558-7916. DOI: 10.1109/TASL.2012.2186807.

3Ivan Selesnick. Sparse Deconvolution (An MM Algorithm).
http://cnx.org/contents/£2738de6-b36d-458d-a2dd-2b50£3756fe55@5/Sparse-Deconvolution-An=MM-Alg:
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Comparisons with state-of-the-art

SLP
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Figure: A comparison of sparse deconvolution methods for clean speech: Rows 1, 2, and 3 corresponding to Column 1 show the
speech signal, frequency response of the LP filter, and the LP residue, respectively. For Columns 2—4, Rows 1, 2, and 3 show
estimates of the filter, its frequency response, and the excitation, respectively.
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o MAP formulation of the problem using super-Gaussian priors for a sparse solution.
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Summary

@ We considered the problem of sparse blind deconvolution.
o MAP formulation of the problem using super-Gaussian priors for a sparse solution.

@ Resulting cost function is non-convex and was optimized using an alternating ¢, — (>
projections algorithm (ALPA).

o ALPA breaks the optimization problem into two convex sub problems for estimation
of excitation and filter.
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Questions?

DA
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