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Problem Formulation: Blind Deconvolution (BD)

Consider the linear measurement model

y = h ∗ e + w = He + w = Eh + w,

h ∈ RL: Point spread function (PSF).
e ∈ RM : Excitation.
y ∈ RN : observation.
w ∈ RN : Noise (N = L + M − 1).

E ∈ RN×L: linear convolution matrices corresponding to e.
H ∈ RN×M : linear convolution matrices corresponding to h.
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Some Examples

Debluring: Blurring filter not known.

Monday, April 4, 16

Point source blurred due Gaussian PSF with unknown parameters.
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Linear speech production model: Factorize voiced speech into vocal-tract filter and
excitation.

Speech production 
model Vocal tract filter h 0 100 200 300 400 500
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Objective and Typical Issues

Objective Develop a sparse blind deconvolution (SBD) algorithm to estimate h
and e from y.

Assumption: e is a sparse vector and h is a smooth and stable
operator.

Typical issues Infinitely many solutions to the BD problem. Need priors on e
and/or h to reduce search space.
The formulated cost function is non-convex, thus leading to local
minima issues.
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Our Contribution

We formulate the SBD problem using the MAP formulation.

Propose an alternating minimization algorithm for the problem.

We show that for well-conditioned systems, the pseudo-inverse solution is a good
initialization.

We analyze the convergence property of the algorithm.

We show application to deconvolution of voiced speech signals.
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MAP Formulation for BD problem

h: deterministic but unknown.

e: i.i.d. generalized p-Gaussian distribution
(gpG).

f (e) =

(
p

2Γ(1/p)γσe

)M

exp

(
−
∑
i

(
|ei |
γσe

)p
)
,

where γ =
(

Γ(1/p)
Γ(3/p)

)1/2
and 0 ≤ p ≤ 1 (Heavy-tailed

distribution).

The MAP estimates of the vectors h and e
are

(hMAP, eMAP) = arg max
h,e

f (y/e; h)f (e),

= arg min
h,e
‖y −He‖2

2 + λ‖e‖pp︸ ︷︷ ︸
F (h,e)

.

The joint cost F (h, e) is non-convex and not
straightforward to optimize.

We resort to alternating minimization.
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An Alternating `p − `2 Projections Algorithm (ALPA) I

h-step:e-step:
Fix h

arg min
e

F (h, e)
Fix e

arg min
h

F (h, e)

Update e

Update h

Monday, April 4, 16

e-step: e(k+1) = arg min
e

F
(
h(k), e

)
= arg min

e
‖y −H(k)e‖2

2 + λ‖e‖pp,

For 0 ≤ p < 1, F (h(k), e) is non-convex.

∇eF
(
h(k), e

)
has a discontinuity at e = 0.
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An Alternating `p − `2 Projections Algorithm (ALPA) II

Iteratively reweighted least-squares (IRLS)

Majorize ‖e‖pp with weighted `2-norm function and minimize the cost iteratively.

ẽ(j+1,k) = arg min
e
‖y −H(k)e‖2

2 + λeTWj,ke︸ ︷︷ ︸
Fε(h(k),e)

,

where W(j,k) = diag

(
p
(

(ẽ
(j,k)
i )2 + ε

)p/2−1
)
.

Final e-step solution (after J iterations of IRLS): e(k+1) = ẽ(J,k),

e(k+1) =
(

(H(k))T (H(k)) + λW(J,k)
)−1

(H(k))Ty,

Use e(k+1) to update h(k+1) = arg min
h

Fε
(
h, e(k+1)

)
.

h-step solution: h̃(k+1) = arg min
h
‖y − E(k+1)h‖2

2 = E(k+1)†y,

h(k+1) = h̃(k+1)/‖h̃(k+1)‖2
2.
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Initialization: Pseudo-inverse Solution

A good initialization might ensure we are in the “right” local minima.

Initialization: Given some initial filter estimate h̃, how good is the regularized
least-squares solution ( W(0,0) = 1)?

If true excitation and filter are e∗ and h∗ respectively, δh = h∗ − h̃ and
pseudo-inverse solution is denoted êBLS. The difference

δeBLS = e∗ − êBLS = H∗†(w − δHe∗),

where δH = Conv. mtx(δh).

What is the probability of 1
M
‖δeBLS‖1 exceeding a value ξ?

P

(
1

M
‖δeBLS‖1 > ξ

)
≤ κ2σ2

(ξ − κ‖δH‖2‖e∗‖2/
√
M)2

.

κ = condition number of H∗.
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Convergence Guarantees for ALPA
Behaviour of the majorized cost function Fε (h, e):

After e-step,

Fε(h
(k), e(k+1)) ≤ Fε

(
h(k), e(k)

)
.

Similarly, after h-step,

Fε(h
(k+1), e(k)) ≤ Fε

(
h(k), e(k)

)
.

After one cycle of ALPA, (both e-step and h-step)

Fε(h
(k+1), e(k+1)) ≤ Fε

(
h(k), e(k)

)
.

Behaviour of the original Cost function F (h, e):

With ε updated as ε(k) = c
(

max
∣∣∣e(k)

j

∣∣∣)2−p

, with 0 < c � 1,

F
(
h(k+1), e(k+1)

)
≤ F

(
h(k), e(k)

)
.
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Deconvolution of Voiced Speech Signal

30 ms vowel segment /ae/ (female speaker),
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Figure: (a) Speech samples (sampling rate 16 kHz); (b) LP residue (MO 20); (c) ALPA estimate of the filter; (d) ALPA estimate
of the excitation, (e) frequency response of the estimated filter; and (f) comparison between the original vowel segment shown in
(a) and that synthesized based on the estimated filter and excitation.
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Comparisons with state-of-the-art

Comparisons with Smooth `1/`2 blind deconvolution (SOOT)1, sparse linear prediction
(SLP)2 and MM-based Sparse Deconvolution (SDMM)3.

1A. Repetti et al. “Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed `1/`2 Regularization”. In: IEEE Signal Process.
Lett. 22.5 (2015), pp. 539–543. doi: 10.1109/LSP.2014.2362861. eprint: 1407.5465.

2D. Giacobello et al. “Sparse Linear Prediction and Its Applications to Speech Processing”. In: IEEE Trans. Audio, Speech, Language
Process. 20.5 (2012), pp. 1644–1657. issn: 1558-7916. doi: 10.1109/TASL.2012.2186807.

3Ivan Selesnick. Sparse Deconvolution (An MM Algorithm).
http://cnx.org/contents/f2738de6-b36d-458d-a2dd-2b50f375fe55@5/Sparse-Deconvolution-An-MM-Alg.
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Comparisons with state-of-the-art
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Figure: A comparison of sparse deconvolution methods for clean speech: Rows 1, 2, and 3 corresponding to Column 1 show the
speech signal, frequency response of the LP filter, and the LP residue, respectively. For Columns 2−4, Rows 1, 2, and 3 show
estimates of the filter, its frequency response, and the excitation, respectively.
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Summary

We considered the problem of sparse blind deconvolution.

MAP formulation of the problem using super-Gaussian priors for a sparse solution.

Resulting cost function is non-convex and was optimized using an alternating `p − `2

projections algorithm (ALPA).

ALPA breaks the optimization problem into two convex sub problems for estimation
of excitation and filter.
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Questions?
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