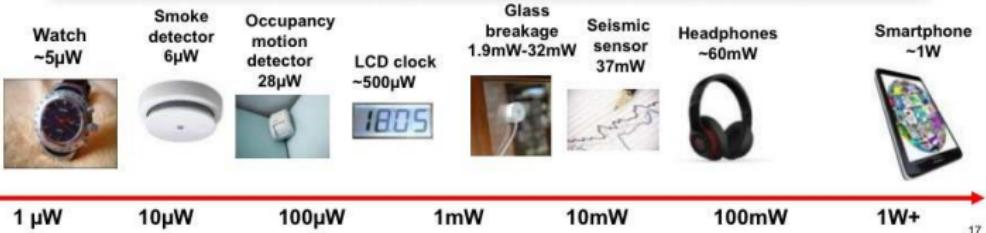


Design of Dual Energy Harvesting Communication Links with Retransmission

Mohit K. Sharma and Chandra R. Murthy


Signal Processing for Communications Lab.
Department of ECE, IISc

April 28, 2016

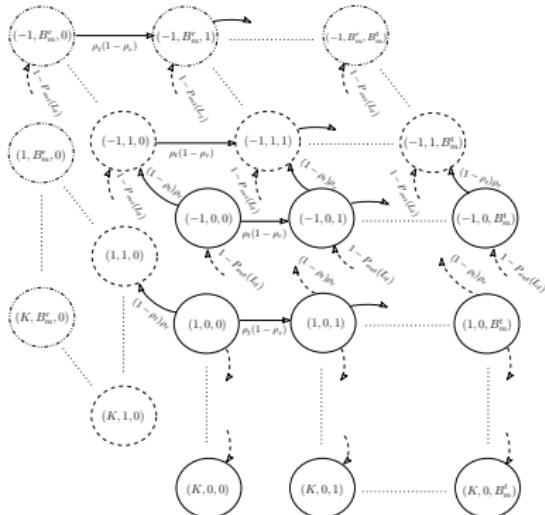
Introduction¹

Power available from energy sources

Energy Source	Characteristics	Harvested Power
Light	Outdoor	100 mW/cm ²
	Indoor	100 µW/cm ²
Thermal	Human	60 µW/cm ²
	Industrial	~1-10 mW/cm ²
Vibration	~Hz–human	~4 µW/cm ³
	~kHz–machines	~800 µW/cm ³
RF	GSM 900 MHz	0.1 µW/cm ²
	WiFi	0.001 µW/cm ²

¹

Source: <https://gigaom.com/2013/11/21/energy-harvesting-chips-the-next-big-thing-for-a-connected-world/>


Introduction

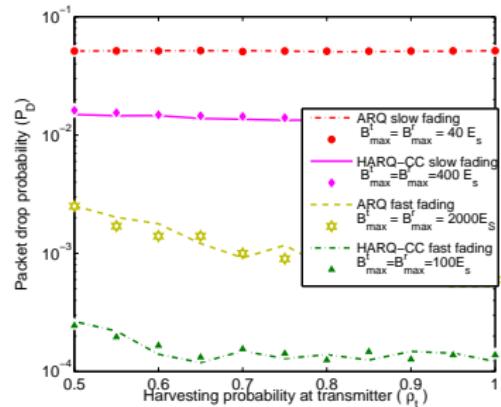
- ▶ EH technology presents prospects of perpetual operation
- ▶ Energy availability is *sporadic*
- ▶ Energy buffer (e.g., battery) is used to mitigate the sporadicity
- ▶ *Energy neutrality constraint*: Cumulative energy used cannot exceed the total harvested energy

System Model

System Dynamics

Packet Drop Probability

Figure: DTMC Model


$$P_D = \sum_{(i,j)=(0,0)}^{(B_m^r, B_m^l)} \pi(i,j) P_D(K|i,j, U_n = 1)$$

Contributions

- ▶ $P_D^{\infty*} \leq P_D \leq P_D^{\infty*} + \mathcal{D}$
where, $\mathcal{D} = \sum_{(i,j) \in \mathcal{I}_1} \pi(i,j)$
- ▶ For policies satisfying average power constraint

$$\mathcal{D} = \Theta(e^{r_*^t B_{\max}^t}) + \Theta(e^{r_*^r B_{\max}^r})$$

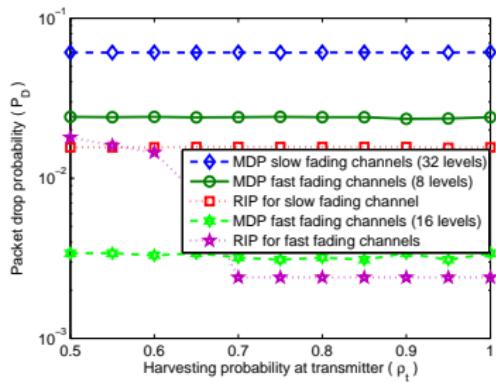

- ▶ Size of battery depends on the drift induced by the policy.

Figure: Battery size

Contributions

- ▶ Lower bound is used as objective
- ▶ Resulting non-convex problems are solved using GP
- ▶ Obtained policies are near-optimal

Figure: Battery size

Future Work

- ▶ Design of near optimal policies for multi-hop EH links with retransmission.
- ▶ Design of optimal device discovery policy for energy harvesting D2D networks.