AR AR
#F7 L NOR
" \/ ‘QQ
: VN
WA /i N
S\ /R %
Taa> WL,
SIS 2SN Ty
nrdia e -

Veritying Data Race Freedom
ot Kernel APIs in a Real Time
Operating System

Suvam Mukherjee
Advisor: Prof. Deepak D'Souza
Computer Science and Automation, Indian Institute of Science

Suvam Mukherjee, CSA, 1ISc

OUTLINE

» Problem Definition
» Proposed Solution
» A Case Study: FreeRTOS
» Experimental Evaluation

» Conclusion and Future Work

Suvam Mukherjee, CSA, 1ISc

Problem Definition

Verifying Data Race Freedom of Kernel APIs|in a Real Time Operating System

int main(void) {
QueueHandle q;
q = QueueCreate(1l, sizeof(int));
TaskCreate(prod, "Prod", 2, ...);
TaskCreate(cons, "Comns", 1, ...);
StartScheduler();

}

void prod(void* params) {
for(;;) {
QueueSend(q,...);
TaskDelay(2);

}
i

void cons(void* params) {
for(;;) {
QueueReceive(q,...);

,
}

Prod

Cons

Idle

Time (tick interrupts)

- e

' WaitingToReceive O=CO=O

SchedulerSuspended

2
ReadyTasksList |1 =)=
b

DelayedTaskList (O=C)=C)
CurrentTCB

L]
TickCount []
[]

PendingReadyList l
MissedTicks | |

QueueData [| [|
WaitingToSend ()=

Suvam Mukherjee, CSA, 1ISc

Problem Definition

Verifying Data Race Freedom |of Kernel APIs in a Real Time Operating System

void vQueueDelete(xQueueHandle pxQueue)

{

traceQUEUE_DELETE(pxQueue);
vQueueUnregisterQueue(pxQueue);
vPortFree(pxQueue->pcHead);
vPortFree(pxQueue);

unsigned portBASE_TYPE uxQueueMessagesWaitingFromISR(const xQueueHandle pxQueue)

{
unsigned portBASE_TYPE uxReturn;

uxReturn = pxQueue—>uxMessagesWaiting;

return uxReturn;

Suvam Mukherjee, CSA, 1ISc

Problem Definition

Verifyinngata Race Freedom of Kernel APIs in a Real Time Operating System

) Guarantees for any application with an arbitrary number of tasks

(unlike bug-finding)

1 Helps to create a version of the RTOS certified against data races

Suvam Mukherjee, CSA, 1ISc

Proposed Solution

1. Model control flow

2. Model accesses to shared data structures

3. Perform suitable abstractions

4. Model check a small number of reduced models
= Enhances scalability
= Preserves soundness guarantees

Suvam Mukherjee, CSA, 1ISc

A Case Study: FreeRTOS

) One of the most popular real time operating systems
1 Over 100,000 downloads in 2014 alone
1 Uses a preemptive flag-based and priority-based scheduling policy

! Rich set of APIs performing a wide variety of operations
= Creating tasks,
= Creating queues,
= Communication between tasks, and many more

) Presence of interrupts
= Specific set of functions which interrupt handlers can invoke

Suvam Mukherjee, CSA, 1ISc

A Case Study: FreeRTOS

Pl Scheduler

_____ (sched enab) | | (sched susp)

: Y ¥ ¥
b —[up(api)] [up(isr)J [up(SChSUS)]
| |

i
I
i |‘
up(isr) -:----—l 4
|
1
1
|

Interrupt
(sched enab)

| down(api)_ﬁ <

|
]
|
1
|
|
|
I

up(isr)]— -——

Interrupt
(sched susp)

Courtesy: Prof. Deepak D'Souza

Suvam Mukherjee, CSA, 1ISc

Experimental Evaluation

O Model Checking M2 O Model Checking with Reduction
O On a system with 128GB RAM, 2 X (8-core Intel Xeon Reduced model
Haswell 2.6GHz) system " Process 1: API
= Process 2: API
O With SPIN optimizations enabled " Process 3: ISR

" Process 4: Tick Interrupt
" Process 5: Scheduler

'Running time: > 3 hours 1 2023 Reduced Models (17 APIs, 7 ISRs)

States explored:

4.43 X 108 O System Used: 32 GB RAM, Intel Core i7 Quad-Core

3.40GHz, Ubuntu 14.04
Benign Time
Violations (hrs)
1 40 10 24 6 1.5

2 0 - = - 1.35

Suvam Mukherjee, CSA, 1ISc

| RAM used: > 39GB

Conclusion and Future Work

) Proposed an approach to model and exhaustively check a library of Kernel APIs in an
RTOS for data races

! The proposed steps:
= Model control flow and access to shared data structures

= Perform suitable abstractions
= For scalability, model check a small number of reduced models

) Concrete instantiation of our approach
= Modelled concurrency behaviors of FreeRTOS Kernel APls and ISRs

= Model checked 2023 reduced models in under 2 hours
= Detected 30 data races and classified them as harmful or benign.

= Created a certified race-free version of FreeRTOS

) Carry out further instantiations, for example, OSEK, java.util.concurrent etc.
) Identify general patterns which allow model checking of small set of reduced models

Suvam Mukherjee, CSA, 1ISc

