
Verifying Data Race Freedom
of Kernel APIs in a Real Time

Operating System

Suvam Mukherjee
Advisor : Prof. Deepak D’Souza

Computer Science and Automation, Indian Institute of Science

Suvam Mukherjee, CSA, IISc

OUTLINE

 Problem Definition

 Proposed Solution

 A Case Study: FreeRTOS

 Experimental Evaluation

 Conclusion and Future Work

Suvam Mukherjee, CSA, IISc

Problem Definition

 Verifying Data Race Freedom of Kernel APIs in a Real Time Operating System

Suvam Mukherjee, CSA, IISc

Problem Definition

 Verifying Data Race Freedom of Kernel APIs in a Real Time Operating System

Suvam Mukherjee, CSA, IISc

Problem Definition

 Verifying Data Race Freedom of Kernel APIs in a Real Time Operating System

 Guarantees for any application with an arbitrary number of tasks

(unlike bug-finding)

 Helps to create a version of the RTOS certified against data races

Suvam Mukherjee, CSA, IISc

Proposed Solution

1. Model control flow

2. Model accesses to shared data structures

3. Perform suitable abstractions

4. Model check a small number of reduced models
 Enhances scalability

 Preserves soundness guarantees

Suvam Mukherjee, CSA, IISc

A Case Study: FreeRTOS

 One of the most popular real time operating systems

 Over 100,000 downloads in 2014 alone

 Uses a preemptive flag-based and priority-based scheduling policy

 Rich set of APIs performing a wide variety of operations
 Creating tasks,

 Creating queues,

 Communication between tasks, and many more

 Presence of interrupts
 Specific set of functions which interrupt handlers can invoke

Suvam Mukherjee, CSA, IISc

A Case Study: FreeRTOS

Suvam Mukherjee, CSA, IISc

Courtesy: Prof. Deepak D’Souza

Experimental Evaluation

Suvam Mukherjee, CSA, IISc

Hard!

RAM used: > 39GB

Running time: > 3 hours

States explored:

4.43 X 108

 Model Checking M2

 On a system with 128GB RAM, 2 X (8-core Intel Xeon
Haswell 2.6GHz) system

 With SPIN optimizations enabled

 Model Checking with Reduction

Reduced model
 Process 1: API
 Process 2: API
 Process 3: ISR
 Process 4: Tick Interrupt
 Process 5: Scheduler

 2023 Reduced Models (17 APIs, 7 ISRs)

 System Used: 32 GB RAM, Intel Core i7 Quad-Core
3.40GHz, Ubuntu 14.04

Iteration #
Violations

FP Harmful Benign Time
(hrs)

1 40 10 24 6 1.5

2 0 - - - 1.35

Conclusion and Future Work

 Proposed an approach to model and exhaustively check a library of Kernel APIs in an
RTOS for data races

 The proposed steps:
 Model control flow and access to shared data structures
 Perform suitable abstractions
 For scalability, model check a small number of reduced models

 Concrete instantiation of our approach
 Modelled concurrency behaviors of FreeRTOS Kernel APIs and ISRs
 Model checked 2023 reduced models in under 2 hours
 Detected 30 data races and classified them as harmful or benign.
 Created a certified race-free version of FreeRTOS

 Carry out further instantiations, for example, OSEK, java.util.concurrent etc.

 Identify general patterns which allow model checking of small set of reduced models

Suvam Mukherjee, CSA, IISc

