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Problem Definition

Verifying Data Race Freedom of Kernel APIs|in a Real Time Operating System

int main(void) {
QueueHandle q;
q = QueueCreate(1l, sizeof(int));
TaskCreate(prod, "Prod", 2, ...);
TaskCreate(cons, "Comns", 1, ...);
StartScheduler();

}

void prod(void* params) {
for(;;) {
QueueSend(q,...);
TaskDelay(2);

}
i

void cons(void* params) {
for(;;) {
QueueReceive(q,...);

,
}
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Problem Definition

Verifying Data Race Freedom |of Kernel APIs in a Real Time Operating System

void vQueueDelete( xQueueHandle pxQueue )

{

traceQUEUE_DELETE( pxQueue );
vQueueUnregisterQueue( pxQueue );
vPortFree( pxQueue->pcHead );
vPortFree( pxQueue );

unsigned portBASE_TYPE uxQueueMessagesWaitingFromISR( const xQueueHandle pxQueue )

{
unsigned portBASE_TYPE uxReturn;

uxReturn = pxQueue—>uxMessagesWaiting;

return uxReturn;
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Problem Definition

Verifyinngata Race Freedom of Kernel APIs in a Real Time Operating System

) Guarantees for any application with an arbitrary number of tasks

(unlike bug-finding)

1 Helps to create a version of the RTOS certified against data races
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Proposed Solution

1. Model control flow

2. Model accesses to shared data structures

3. Perform suitable abstractions

4. Model check a small number of reduced models
=  Enhances scalability
=  Preserves soundness guarantees
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A Case Study: FreeRTOS

) One of the most popular real time operating systems
1 Over 100,000 downloads in 2014 alone
1 Uses a preemptive flag-based and priority-based scheduling policy

! Rich set of APIs performing a wide variety of operations
= Creating tasks,
= Creating queues,
= Communication between tasks, and many more

) Presence of interrupts
= Specific set of functions which interrupt handlers can invoke
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A Case Study: FreeRTOS
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Experimental Evaluation

O Model Checking M2 O Model Checking with Reduction
O On a system with 128GB RAM, 2 X (8-core Intel Xeon Reduced model
Haswell 2.6GHz) system " Process 1: API
= Process 2: API
O With SPIN optimizations enabled " Process 3: ISR

" Process 4: Tick Interrupt
" Process 5: Scheduler

'Running time: > 3 hours 1 2023 Reduced Models (17 APIs, 7 ISRs)

States explored:

4.43 X 108 O System Used: 32 GB RAM, Intel Core i7 Quad-Core

3.40GHz, Ubuntu 14.04
# Benign Time
Violations (hrs)
1 40 10 24 6 1.5

2 0 - = - 1.35
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Conclusion and Future Work

) Proposed an approach to model and exhaustively check a library of Kernel APIs in an
RTOS for data races

! The proposed steps:
= Model control flow and access to shared data structures

= Perform suitable abstractions
= For scalability, model check a small number of reduced models

) Concrete instantiation of our approach
= Modelled concurrency behaviors of FreeRTOS Kernel APls and ISRs

= Model checked 2023 reduced models in under 2 hours
= Detected 30 data races and classified them as harmful or benign.

= Created a certified race-free version of FreeRTOS

) Carry out further instantiations, for example, OSEK, java.util.concurrent etc.
) Identify general patterns which allow model checking of small set of reduced models
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