
Verifying Data Race Freedom
of Kernel APIs in a Real Time

Operating System

Suvam Mukherjee
Advisor : Prof. Deepak D’Souza

Computer Science and Automation, Indian Institute of Science

Suvam Mukherjee, CSA, IISc

OUTLINE

 Problem Definition

 Proposed Solution

 A Case Study: FreeRTOS

 Experimental Evaluation

 Conclusion and Future Work

Suvam Mukherjee, CSA, IISc

Problem Definition

 Verifying Data Race Freedom of Kernel APIs in a Real Time Operating System

Suvam Mukherjee, CSA, IISc

Problem Definition

 Verifying Data Race Freedom of Kernel APIs in a Real Time Operating System

Suvam Mukherjee, CSA, IISc

Problem Definition

 Verifying Data Race Freedom of Kernel APIs in a Real Time Operating System

 Guarantees for any application with an arbitrary number of tasks

(unlike bug-finding)

 Helps to create a version of the RTOS certified against data races

Suvam Mukherjee, CSA, IISc

Proposed Solution

1. Model control flow

2. Model accesses to shared data structures

3. Perform suitable abstractions

4. Model check a small number of reduced models
 Enhances scalability

 Preserves soundness guarantees

Suvam Mukherjee, CSA, IISc

A Case Study: FreeRTOS

 One of the most popular real time operating systems

 Over 100,000 downloads in 2014 alone

 Uses a preemptive flag-based and priority-based scheduling policy

 Rich set of APIs performing a wide variety of operations
 Creating tasks,

 Creating queues,

 Communication between tasks, and many more

 Presence of interrupts
 Specific set of functions which interrupt handlers can invoke

Suvam Mukherjee, CSA, IISc

A Case Study: FreeRTOS

Suvam Mukherjee, CSA, IISc

Courtesy: Prof. Deepak D’Souza

Experimental Evaluation

Suvam Mukherjee, CSA, IISc

Hard!

RAM used: > 39GB

Running time: > 3 hours

States explored:

4.43 X 108

 Model Checking M2

 On a system with 128GB RAM, 2 X (8-core Intel Xeon
Haswell 2.6GHz) system

 With SPIN optimizations enabled

 Model Checking with Reduction

Reduced model
 Process 1: API
 Process 2: API
 Process 3: ISR
 Process 4: Tick Interrupt
 Process 5: Scheduler

 2023 Reduced Models (17 APIs, 7 ISRs)

 System Used: 32 GB RAM, Intel Core i7 Quad-Core
3.40GHz, Ubuntu 14.04

Iteration #
Violations

FP Harmful Benign Time
(hrs)

1 40 10 24 6 1.5

2 0 - - - 1.35

Conclusion and Future Work

 Proposed an approach to model and exhaustively check a library of Kernel APIs in an
RTOS for data races

 The proposed steps:
 Model control flow and access to shared data structures
 Perform suitable abstractions
 For scalability, model check a small number of reduced models

 Concrete instantiation of our approach
 Modelled concurrency behaviors of FreeRTOS Kernel APIs and ISRs
 Model checked 2023 reduced models in under 2 hours
 Detected 30 data races and classified them as harmful or benign.
 Created a certified race-free version of FreeRTOS

 Carry out further instantiations, for example, OSEK, java.util.concurrent etc.

 Identify general patterns which allow model checking of small set of reduced models

Suvam Mukherjee, CSA, IISc

