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Problem Definition 

 Verifying Data Race Freedom of Kernel APIs in a Real Time Operating System 

  

 Guarantees for any application with an arbitrary number of tasks 

(unlike bug-finding) 
 

 Helps to create a version of the RTOS certified against data races 
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Proposed Solution 

1. Model control flow 
 

2. Model accesses to shared data structures 
 

3. Perform suitable abstractions 
 

4. Model check a small number of reduced models 
 Enhances scalability 

 Preserves soundness guarantees 
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A Case Study: FreeRTOS 

 One of the most popular real time operating systems 

 Over 100,000 downloads in 2014 alone 

 Uses a preemptive flag-based and priority-based scheduling policy 

 Rich set of APIs performing a wide variety of operations 
 Creating tasks, 

 Creating queues, 

 Communication between tasks, and many more 

 Presence of interrupts 
 Specific set of functions which interrupt handlers can invoke 
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Experimental Evaluation 
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Hard! 

RAM used: > 39GB 

Running time: > 3 hours 

States explored:  

4.43 X 108 

 Model Checking M2 
 

 On a system with 128GB RAM, 2 X (8-core Intel Xeon 
Haswell  2.6GHz) system 
 

 With SPIN optimizations enabled 
 
 

 Model Checking with Reduction 
 

Reduced model 
 Process 1: API 
 Process 2: API 
 Process 3: ISR 
 Process 4: Tick Interrupt 
 Process 5: Scheduler 
 

 2023 Reduced Models (17 APIs, 7 ISRs) 
 

 System Used: 32 GB RAM, Intel Core i7 Quad-Core  
3.40GHz, Ubuntu 14.04 
 
 

Iteration # 
Violations 

FP Harmful Benign Time 
(hrs) 

1 40 10 24 6 1.5 

2 0 - - - 1.35 



Conclusion and Future Work 

 Proposed an approach to model and exhaustively check a library of Kernel APIs in an     
RTOS for data races 

 The proposed steps: 
  Model control flow and access to shared data structures 
  Perform suitable abstractions 
  For scalability, model check a small number of reduced models 

 Concrete instantiation of our approach 
  Modelled concurrency behaviors of FreeRTOS Kernel APIs and ISRs 
  Model checked 2023 reduced models in under 2 hours 
  Detected 30 data races and classified them as harmful or benign.  
  Created a certified race-free version of FreeRTOS  
 

 Carry out further instantiations, for example, OSEK, java.util.concurrent etc. 

 Identify general patterns which allow model checking of small set of reduced models 
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