Frequency-domain CMOS Capacitance Interface

Tuneable Sensitivity and Adjustable Dynamic Range

G S Javed

Advisor: Dr. Gaurab Banerjee

Analog and RF Systems Lab Dept. Of Electrical Communication Engineering Indian Institute of Science

Problem Statement

Measure small values of measurand.

- Capacitance change
- Time duration
- Avoid high resolution ADCs
 - Use ONLY 8-10 bit ADCs
- Low Cost Design & Manpower (NRE)

& fabrication

Multi-sensor compatible

Desired Features

- Integrated sensor interface
- Minimum Area; just enough Performance
- Reconfigurable Sensitivity
- Identify tuning knobs.

Applications

Remote Health Monitoring Systems, Wearable Electronics, **IoT**, Industrial Health Monitoring, **Biomedical Diagnostics**, Home automation, etc

Proposed Solution Integrated Sensor Interface Design

Pradeep Dixena, M.E Thesis "Frequency Domain Capacitance to Digital Conversion", ARSL Alumnus

Measurement Results - I

Measurement Results – II

Tunable Sensitivity and Adjustable Dynamic Range

Fig: Adjustable Dynamic Range

Measurement Results - III

Parameter	This Work [1]	[2]	[3]	[4]	[5]	[6]
Sensitivity (mV/fF)	8.1	0.3	0.83	0.09	4	5
Technology (um)	0.13	0.35	0.35	0.35	0.5	0.7
Voltage Supply (V)	1.2	3.3	3.3	5	3.3	5
Power (mW)	3.2	7.9	1.44	50	0.001	7
Area (mm ²)	0.17	0.47	0.048	6.25	0.007 8	2.66

[1] Javed G.S., ISCAS 2016 [2] F. Aezinia, TCAS-II 2013 [3] D. Y. Shin, TCAS-II 2011 [4] Zhen Ye, Sensors 2013 [5] S. Y. Peng ,TCAS – I 2008 [6] A. Heidary ,JSSC 2008

Sensitivity is enhanced by 2x – 10x in a fraction of the area

Summary and Conclusion

✓ The optimization of this system for operation around a nominal capacitance of 10 pF, with a variation of 1 pF, and a resolution of hundreds of atto Farads, and sensitivity enhancement enables its use in precision navigational systems.

✓ The use of digital ring oscillators in this architecture, substantially reduces the footprint of the system, paving the way for its integration as a "pixel" in capacitance measurement arrays.

✓ The choice of a set of system variables, such as the charge pump current, integration time, and division ratio, can optimize performance for different applications, some of which require a trade off between precision and measurement time.

Sensitivity enhancement, reduced footprint, adjustable dynamic range, optimized performance

