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| Motivation: Mitigation of Human-Wildlife Conflicts

Leopard attacks a man in Leopard attacks a man in a Police display tiger and leopard skins that
a village in Bengal. school at Bengaluru. were seized at Ghaziabad, New Delhi.

nd o * Animal excursions
f \ - Results in killing of livestock and crop destruction

\ FOIEL: S /'/Virtual - Sometimes animals themselves are injured/killed
: ' - Fence - Leopard attacks routinely make headlines
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Village - Results in poaching and forest destruction

- Tiger killings in India average two per week

Early warning systems: Virtual fence  Goal: Investigate efficacy of low-power WSN-

based early warning systems to manage human-

animal conflicts
* Work part of a project jointly funded by NSF & DeitY . ) '
(June 2012-August 2015) - PIR sensors (motion sensors) are passive devices,

inexpensive and widely available commercially




- PIR-Based Sensor Platform for Intruder Classification J
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* Designed and developed Indigenous PIR-based sensor platform that
makes use of inexpensive commercially available components

* Challenges:
— False alarms generated by wind-blown vegetative motion
— Need to classify intrusions: Humans Versus Animals
— Animal data collection is hard

* Restricted problem setting with the following assumptions:
— Intruder moves in straight lines at a uniform velocity that is typically observed
— No multiple intrusions
— Only intrusions from humans, dogs, leopards, tigers and wolves




Virtual Pixel Array: Single Lens

Dual Pixel
Sensor Die

Virtual Beams \

Signal output for an human
moving across the VPA

Virtual Pixel Array

* PIR sensors detect changes in radiation
— Typically used in conjunction with a lens

* Field of View (FoV) of the sensor
Set of diverging virtual beams along which radiation is received by the pixels

*  Virtual Pixel Array (VPA) associated with a plane:

— Intersection of the FoV of the sensor with a plane
Signal generated when an object enters and exits the pixels (hence, suitable for motion detection)




L Virtual Pixel Array : Multi-lens
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VPA associated with the parallel plane

Signal output for an human moving across the VPA




PA Design
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Sensor-lens arrangement

Inside View

Indigenous sensor platform developed

50 100 . 250
Human Animal

Waveforms for human and
animal walking back-to-back

Waveform for clutter arising
from wind-blown vegetation

Sensors A, B, C and D provide vertical spatial resolution

Helps classify intrusions by exploiting difference in their height
Human cuts more rows compared to animals

Sensors Ly, L,, R; & R, provide horizontal spatial resolution

Energy and correlation based features can be used for discrimination
Can be computed easily even on processors with modest computational resources (known as a mote)

Helps discriminates between intruder and clutter based on type of motion

L and R signals will be highly correlated for an intruder




- Chirplet-Based Model For Intruder Detection
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Explaining Chirp in the Intruder Signals

1.5
1
0.5
e
-0.5
-1

800 1000 1200 ) 200 400 600 800 1000
Samples

s(n)
Frequency

1% 200 400 600
Samples n

Clutter signal & its corresponding Short-Time Fourier
Transform

* |Intruder Detection:

— Exploit fact that signals in sensors A, B, C and D corresponding to
intrusions exhibit chirp while clutter signals do not.




Video: Data Collection





Video: Sighal Generation via 3D Animation J

Animation =i e





Final Classifier: Classification Accuracy
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Notation:

SVM(f): SVM classifier that employs
feature vector f.

Feature vectors employed:

Ceo €

Eg <

60-D Chirplet parameters
Energy in all 8 sensors

Real-World Data Simulated Data

Minimum Average Minimum Average

Accuracy Accuracy Accuracy Accuracy
Clutter 96.3 98.3 96.4 99.2
Intruder 100 98.6 98.7 99.2
Human 95.0 98.0 100.0 100.0
Animal 100.0 99.5 100.0 100.0
Overall 98.8 99.9 99.4 99.9




Thank You!l
Questions???




Backup Slides




L VPA: Rows A, B, C& D |
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Exploiting difference in geometry for classification at 5m

Sensors A, B, C and D provide vertical spatial resolution
— Classify intrusions by exploiting difference in their height

- Energy features useful




VPA: L, L,, R, &R,
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Exploiting difference in motion for classification

Sensors L, L,, R; &R,
— Discriminates between intruder and clutter based on type of motion
— (oscillatory vs translational motion )
— Left and right sensors will have similar signals for intrusion (will exhibit a high correlation)




Human vs Animal:

Comparing the Signals Generated
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L VPA Design j
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* Sensors A, B, Cand D provide vertical spatial resolution
- Classify intrusions by exploiting difference in their height
- Human cuts more rows compared to animals
* Sensorsl, L, R, &R,
— Discriminates between intruder and clutter based on type of motion
— Land R signals will be highly correlated for an intruder




k VPA Design j
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* Sensors A, B, Cand D provide vertical spatial resolution
- Classify intrusions by exploiting difference in their height
- Human cuts more rows compared to animals
* Sensorsl, L, R, &R,
— Discriminates between intruder and clutter based on type of motion
— Land R signals will be highly correlated for an intruder




VPA Design j
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* Sensors A, B, C and D provide vertical spatial resolution
- Classify intrusions by exploiting difference in their height
- Human cuts more rows compared to animals

* Sensorsl, L, R; &R,
— Discriminates between intruder and clutter based on type of motion
— Land R signals will be highly correlated for an intruder




Intruder Detection via Chirplet Decomposition J
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Example chirplet Real signal approximated by 3 chirplets
: 2\—% (n—m) . C 2 i
e Chirplet x(n;m,w,c,d) = (27d°) * exp Ve <X EXP JE(n_m) + Ja)(n—m)

«  Complex analytic representation of signal S, (Nn) =s(n)+ jS(n)

3 -
* Intruder signal well approximated by sum of 3 chirplets: S,(n) = Zaiej¢xi (n;m;, @, c;,d;)
i=1

e Chirplet—based feature vector C,,: Append ML estimates (&,,M,,@,,€;,d;) corresponding to 3 chirplets

*  Cg,has dimension 60: (5 Parameters per Chirplet * 3 Chirplets per Signal * 4 Signals)

Reference : J. C. O’Neill, P. Flandrin and W. C. Karl, “Sparse representations with chirplets via maximum likelihood Estimation”




Chirplet Decomposition for Human and Clutter J
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