Separable Convex Optimization with Linear Ascending Constraints

Akhil P T

Thesis supervisor: Dr. Rajesh Sundaresan

Electrical Communication Engineering, Indian Institute of Science, Bangalore.

April 28, 2016

Outline

Motivation

Problem Statement

A Distributed Algorithm

(ロ)、(型)、(E)、(E)、 E) の(の)

Proof Steps

Network Structure

The network class we consider is analogous to a highway taking traffic to the downtown of a city.

Figure : Network Structure

- n flows across the network.
- Flow *i* derives a utility $w_i(x_i)$.
- Maximize sum utility subject to the flow constraints of the network.

Problem Statement

 $System((x_i); W, F)$: Maximize $W(x) := \sum_{i=1} w_i(x_i)$ subject to $x_i > 0$ $i = 1, 2, \cdots, n$, $x_1 < \alpha_1$, $x_1 + x_2 < \alpha_1 + \alpha_2$ · < : $x_1 + x_2 + \cdots + x_n = \alpha_1 + \alpha_2 + \cdots + \alpha_n$

- ▶ w_i, i = 1, 2, · · · , n are strictly concave, strictly increasing, continuously differentiable functions.
- $\alpha_i \geq 0$ for $i = 1, 2, \cdots, n$.
- ► Traffic is elastic (no minimum requirement).

Distributed Optimization

- The network does not know the utility functions.
- Users do not know the network structure.
- Primal ascent and dual descent methods (Arrow-Hurwicz-Uzawa, Low-Lapsley).
- Kelly decomposition
 - Decomposes the system problem into n user problems and a network problem.

Figure : Kelly Decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Kelly Decomposition

Choose p_i to maximize the net utility of user i.

User
$$(p_i; \lambda_i)$$
: Maximize $w_i(\frac{p_i}{\lambda_i}) - p_i$
 $p_i \ge 0.$

Based on (p_i), the network allocates rates in a proportionally fair manner.

Network
$$((x_i); (p_i), F)$$
: Maximize $\sum_{i=1}^{n} p_i \cdot \log x_i$
 $(x_i) \in F$.

- Let (x_i) maximize the network problem. Then $\lambda_i = \frac{p_i}{x_i}$.
- There exists $(\lambda_i^*), (p_i^*), (x_i^*)$ such that
 - p_i^* solves the user problem for $\lambda_i = \lambda_i^*$.
 - (x_i^*) solves the network problem for $(p_i) = (p_i^*)$ and $x_i^* = \frac{p_i^*}{\lambda_i^*}$.

• (x_i^{\star}) solves the system problem.

Kelly Decomposition Contd.

An iterative method

$$(\lambda_i^{(0)}) \to (p_i^{(0)}) \to (x_i^{(0)}) \underbrace{\to \left(\lambda_i^{(1)} = \frac{p_i^{(0)}}{x_i^{(0)}}\right) \to (p_i^{(1)}) \to (\hat{x}_i)}_{\mathsf{T}(\mathsf{x})}$$

 Restatement of Kelly decomposition: The optimal solution to the system problem, x*, satisfies

$$x^{\star}=T(x^{\star}).$$

• But T(x) has multiple fixed points.

Algorithm and Main Result

Rate update

$$x^{(k+1)} = (1 - a(k)) \cdot x^{(k)} + a(k) \cdot T(x^{(k)}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Take
$$a(k) = \frac{1}{k+1}$$
.

Theorem

 $x^{(k)}$ converges to x^* , the optimal solution to the system problem.

Proof Steps

• $x^{(k)}$ approximates the trajectory of the following ODE.

$$\dot{x}(t)=T(x)-x.$$

► The equilibrium points of the ODE are the fixed points of T(x).

 x(t) converges to an equilibrium point shown via Lyapunov theory.

- W(x) is the Lyapunov function.
- The equilibrium point satisfies the KKT conditions of the system problem.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

•
$$x(t) \rightarrow x^*$$
, hence $x^{(k)} \rightarrow x^*$.

Advantages of Our Algorithm

Complexity of the algorithm.

- ► The network problem can be solved in O(n) steps using String algorithm (Muckstadt and Sapra).
- User problem solved in $\mathcal{O}(1)$ steps.
- The Algorithm of Kelly-Maulloo-Tan.
 - The algorithm solves a relaxation of the system problem.
 - It uses Kelly decomposition but does not solve the network problem at each step.
 - Rates allocated at intermediate steps can lie outside the feasible set.
 - This may result in slower convergence to the optimal solution.