
Separable Convex Optimization with Linear
Ascending Constraints

Akhil P T

Thesis supervisor: Dr. Rajesh Sundaresan

Electrical Communication Engineering,
Indian Institute of Science, Bangalore.

April 28, 2016



Outline

Motivation

Problem Statement

A Distributed Algorithm

Proof Steps



Network Structure

I The network class we consider is analogous to a highway
taking traffic to the downtown of a city.
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Figure : Network Structure

I n flows across the network.

I Flow i derives a utility wi (xi ).

I Maximize sum utility subject to the flow constraints of the
network.



Problem Statement

System((xi );W ,F ) :

Maximize W (x) :=
n∑

i=1

wi (xi )

subject to xi ≥ 0 i = 1, 2, · · · , n,
x1 ≤ α1,

x1 + x2 ≤ α1 + α2,

... ≤ ...

x1 + x2 + · · ·+ xn = α1 + α2 + · · ·+ αn.

I wi , i = 1, 2, · · · , n are strictly concave, strictly increasing,
continuously differentiable functions.

I αi ≥ 0 for i = 1, 2, · · · , n.
I Traffic is elastic (no minimum requirement).



Distributed Optimization
I The network does not know the utility functions.
I Users do not know the network structure.
I Primal ascent and dual descent methods

(Arrow-Hurwicz-Uzawa, Low-Lapsley).
I Kelly decomposition

I Decomposes the system problem into n user problems and a
network problem.

1

i

n

Network

Users

p1

λ1

λi

pi

xi

xn

pn
λn

x1

...

...

Figure : Kelly Decomposition



Kelly Decomposition

I Choose pi to maximize the net utility of user i .

User(pi ;λi ) : Maximize wi (
pi
λi

)− pi

pi ≥ 0.

I Based on (pi ), the network allocates rates in a proportionally
fair manner.

Network((xi ); (pi ),F ) : Maximize
n∑

i=1

pi · log xi

(xi ) ∈ F .

I Let (xi ) maximize the network problem. Then λi = pi
xi

.

I There exists (λ?i ), (p?i ), (x?i ) such that
I p?i solves the user problem for λi = λ?i .

I (x?i ) solves the network problem for (pi ) = (p?i ) and x?i =
p?
i

λ?
i

.

I (x?i ) solves the system problem.



Kelly Decomposition Contd.

I An iterative method
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I Restatement of Kelly decomposition: The optimal solution to
the system problem, x?, satisfies

x? = T (x?).

I But T (x) has multiple fixed points.



Algorithm and Main Result

I Rate update

x (k+1) = (1− a(k)) · x (k) + a(k) · T (x (k)).

I Take a(k) = 1
k+1 .

Theorem
x (k) converges to x?, the optimal solution to the system problem.



Proof Steps

I x (k) approximates the trajectory of the following ODE.

ẋ(t) = T (x)− x .

I The equilibrium points of the ODE are the fixed points of
T (x).

I x(t) converges to an equilibrium point shown via Lyapunov
theory.

I W (x) is the Lyapunov function.

I The equilibrium point satisfies the KKT conditions of the
system problem.

I x(t)→ x?, hence x (k) → x?.



Advantages of Our Algorithm

I Complexity of the algorithm.
I The network problem can be solved in O(n) steps using String

algorithm (Muckstadt and Sapra).
I User problem solved in O(1) steps.

I The Algorithm of Kelly-Maulloo-Tan.
I The algorithm solves a relaxation of the system problem.
I It uses Kelly decomposition but does not solve the network

problem at each step.
I Rates allocated at intermediate steps can lie outside the

feasible set.
I This may result in slower convergence to the optimal solution.
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