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Stochastic Approximation and Ordinary Differential Equation
(O.D.E) method
• Sequential methods for finding a zero or minimum of a function where only the noisy observations

of the function values are available.
• Iteration:

θn+1 = θn + a(n)[h(θn) + Mn+1], n ≥ 0,

h Lipschitz, {Mn} martingale difference sequence.
• Converges to the globally asymptotically stable equilibrium of the O.D.E θ̇(t) = h(θ(t)) under

reasonable assumptions such as boundedness of the iterates.
•Questions:

– What if the above o.d.e does not have a globally asymptotically stable equilibrium ?
– What if there is a non-additive Markov noise present in the vector field h ?
– What if the iterates are not known to be bounded beforehand ?
– Such scenario arises in off-policy learning.

Off policy TD with linear function approximation
•Given (state,action, reward) trajectory such as

S1, A1, R1, S2, A2, R2, . . .

for a behaviour policy πb estimate value function (i.e find the TD(0) solution) for the target policy
π 6= πb.
• Standard temporal difference learning with linear function approximation may diverge. Also, the

usual single time-scale stochastic approximation kind of argument may not be useful as the associ-
ated ordinary differential equation (o.d.e) may not have the TD(0) solution as its globally asymp-
totically stable equilibrium.
• Solution: TDC with importance weighting

θn+1 = θn + a(n)ρn

[
δn(θn)φn − γφ′nφTnwn

]
,

wn+1 = wn + b(n)
[
(ρnδn(θn)− φTnwn)φn

]
φn = φ(Sn), φ′n = φ(Sn+1), δn(θ) = Rn + γθTφ′n − θTφn, ρn =

π(An|Sn)

πb(An|Sn)

•Analyzing in single time-scale requires knowledge of stationary distribution.
•Use two time-scale framework to make sure that the O.D.Es have globally asymptotically stable

equilibrium.
• Earlier convergence analysis assumed that i.i.d samples of stationary distribution available !.
•We prove that θn converges to the TD(0) fixed point using the theory described in the next section

Problem 1: 2 timescale stochastic approximation with controlled
Markov noise [2]
•Asymptotic analysis of the following coupled iterations:

θn+1 = θn + a(n)
[
h(θn, wn, Z

(1)
n ) + M

(1)
n+1

]
,

wn+1 = wn + b(n)
[
g(θn, wn, Z

(2)
n ) + M

(2)
n+1

]
Z

(i)
n+1 ∼ p(i)(.|Z(i)

n , A
(i)
n , θn, wn), i = 1, 2

• a(n)
b(n)
→ 0 makes it two timescale

Let D(i)(θ, w), i = 1, 2 be the set of all ergodic occupation measures for the prescribed θ and w.
Define g̃(θ, w, ν) =

∫
g(θ, w, z)ν(dz, U (2)) for ν ∈ P (S(2) × U (2)).

Specific Assumptions for two timescale analysis
Faster D.I. ∀θ ∈ Rd, the differential inclusion

ẇ(t) ∈ ĝθ(w(t))

has a singleton global attractor (g.a.) λ(θ) where λ : Rd → Rk is a Lipschitz map with constant
K. Here ĝθ(w) = {g̃θ(w, ν) : ν ∈ D(2)(θ, w)}. Most important assumption as it links the fast and
slow iterates.

Slower D.I. The inclusion
θ̇(t) ∈ ĥ(θ(t)))

has a g.a. set A0. Here ĥ(θ) = {h̃(θ, λ(θ), ν) : ν ∈ D(1)(θ, λ(θ))}.
Stability supn(‖θn‖ + ‖wn‖) <∞ a.s.

Main Results
Introduce Dirac Measure Process: µ(t) = δ

Z
(i)
n

when t ∈ [t(n), t(n + 1)).

Lemma 1 (Tracking Lemma). Consider the non-autonomous O.D.E.

θ̇(t) = h̃(θ(t), λ(θ(t)), µ(t)) (1)

Let θ̄(.) be the piecewise linear interpolated trajectory of the slower iterate and θs(t), t ≥ s denote
the solution to (1) with θs(s) = θ̄(s), for s ≥ 0. Then θ̄(.) tracks the above O.D.E.
Lemma 2 (Limit of the Dirac measure Process). Almost surely every limit point of (µ(s+ .), θ̄(s+ .))

as s→∞ is of the form (µ̃(·), θ̃(·)), where µ̃(·) satisfies µ̃(t) ∈ D(1)(θ̃(t), λ(θ̃(t))).
Lemma 3 (Lemma linking µ̃(·) and θ̃(·)). θ̃(·) satisfies the above mentioned O.D.E with µ(·) replaced
by µ̃(·)

Theorem 1. Under mentioned assumptions,

(θn, wn)→ ∪θ∗∈A0
(θ∗, λ(θ∗))a.s. as n→∞.

Proof Outline. θn
a.s.−−→ an internally chain transitive invariant set of the differential inclusion

θ̇(t) ∈ ĥ(θ(t)),

using previous three lemmas

Lemma 3: ˙̃θ(t) = h̃(θ̃(t), λ(θ̃(t)), µ̃(t)) Lemma 2: µ̃(t) ∈ D(1)(θ̃(t), λ(θ̃(t)))

Final D.I. ˙̃θ(t) ∈ ĥ(θ̃(t)), ĥ(θ̃) = {h̃(θ̃, λ(θ̃), ν) : ν ∈ D(1)(θ̃, λ(θ̃))}

Novelty w.r.t the single timescale and 2 timescale analysis of Borkar
• The analysis is done under verifiable assumptions whereas some of the assumptions in Borkar’s

analysis is hard to verify.

• λ(.) is a local attractor.

•Made the Lipschitz constant in the vector field depend on the state space.

Empirical Analysis of several off-policy learning algorithm

Figure 1: Comparison between TD(0), OFFTDC and ONTDC for Baird’s counterexample

Problem 2: Relaxing the boundedness of the iterates assumption
[3]
• Extension of lock-in probability to Markov noise (first single timescale and then a special case of

2 timescale).

• For sufficiently large n0 calculate lower bound of

P (θn→ H|θn0 ∈ B)

for a compact B̄ ⊂ G with H being an asymptotically stable attractor of the corresponding o.d.e
and G is the domain of attraction.

• The boundedness of the iterates is replaced by asymptotic tightness of the iterates.

•We also give Lyapunov type conditions for asymptotic tightness.

• This, in turn, is shown to be useful in analyzing the tracking ability of general adaptive algorithms.

•We estimate sample complexity of such recursions which is used for step-size selection.

Problem 3: Function approximation error bound for risk-sensitive
reinorcement learning (RL) [1]
• Risk-sensitive cost:

lim sup
n→∞

1

n
ln
(
E[e

∑n−1
m=0 c(Xm,Xm+1)]

)
.

• The Poisson equation here is multiplicative i.e. it is a non-linear eigenvalue problem.

• The eigenvalue is the Perron-Frobenius (PF) one.

• The corresponding RL algorithm with function approximation also converges to a PF eigenvalue
of a non-negative matrix.

•We give several bounds between the original cost and approximated cost.
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Introduction

Stochastic Approximation

Sequential methods for finding a zero or minimum of a function
where only the noisy observations of the function values are available.

Example: find zero of the function F (θ) = E [g(θ, η)]

Distribution of η unavailable.
But, simulated i.i.d samples ηn, n ≥ 1 of η are available.
Algorithm: θn+1 = θn + a(n)g(θn, ηn+1).
g(θn, ηn+1) = F (θn) + Mn+1.
Martingale Difference: Mn+1 = g(θn, ηn+1)− E [g(θn, ηn+1)|Fn].
Fn = σ(θm, ηm,m ≤ n).
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Introduction

Ordinary Differential Equation (O.D.E) Method

O.D.E: θ̇(t) = F (θ(t)).
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Introduction

Almost sure convergence of the algorithm

possible to tell whether zero’s of F are globally asymptotically stable
equilibrium of the above o.d.e without knowing F explicitly. e.g.
F = −∇f then {∇f = 0} is the such a set.

Conclusion[1]: Algorithm converges to the required zero of F (.).

What if the o.d.e does not have a globally asymptotically stable
equilibrium ?

sometimes (!) analyzing in 2-timescale helps.

1
V.S.Borkar. Stochastic Approximation : A Dynamic Systems Viewpoint. Cambridge University Press. 2008
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Introduction

2 timescale stochastic approximation

(slow) θn+1 = θn + a(n)h(θn,wn, η
(1)
n ),

(fast) wn+1 = wn + b(n)g(θn,wn, η
(2)
n )

a(n)
b(n) → 0 makes it two timescale.

What if η
(i)
n are Markov noise, they cannot be converted to

martingale difference.

Source of Markov noise

Parametrization of value function: Vθ = θTφ.
{Xn} present in the algorithm rather than I{Xn=i} (non-parametric
case).

Previous work: assumes that i.i.d samples of stationary distribution
available !
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Introduction

Our contributions

Convergence analysis of two time-scale stochastic approximation with
controlled Markov noise assuming stability i.e.
supn(‖θn‖+ ‖wn‖) <∞ a.s.[2]

Apply a special case of our results to solve the well-known off-policy
convergence problem for TD with linear parametrization.

Convergence analysis of such recursions without assuming the
stability of the iterates [3].

Function Approximation error bound for risk-sensitive reinforcement
learning [4].

2
P.Karmakar and S.Bhatnagar. accepted in Mathematics of Operations Research

3
P.Karmakar, S.Bhatnagar and A. Ramaswamy https://arxiv.org/abs/1601.02217

4
P.Karmakar and S.Bhatnagar https://arxiv.org/abs/1612.07562
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Application 1: Off policy TD with linear function approximation

What is Off-policy TD convergence problem ?

Given (state, action, reward) pairs

S1,A1,R1, S2,A2,R2, . . .

for a behaviour policy πb estimate value function for the target policy
π 6= πb.

Need to design an on-line algorithm which converges to the
TD(0)-fixpoint.
Algorithm: TDC with importance weighting [5]

θn+1 = θn + a(n)ρn
[
δn(θn)φn − γφ′nφTn wn

]
,

wn+1 = wn + b(n)
[
(ρnδn(θn)− φTn wn)φn

]
φn = φ(Sn), φ′n = φ(Sn+1), δn(θ) = Rn + γθTφ′n − θTφn, ρn =

π(An|Sn)

πb(An|Sn)

We analyze in 2-timescale to make sure that the o.d.e’s have globally
asymptotically stable equilibrium.

5
H. R. Maei. 2011. Gradient temporal-difference learning algorithms. University of Alberta.
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Problem 2

Relaxing the stability of the iterates assumption

Extension of lock-in probability to Markov noise.

For sufficiently large n0 calculate lower bound of

P(θn → H|θn0 ∈ B)

for a compact B̄ such that H ⊂ B̄ ⊂ G with H being an
asymptotically stable attractor of the corresponding o.d.e and G is
the domain of attraction.

The boundedness of the iterates is replaced by asymptotic tightness
of the iterates.

We also give Lyapunov type conditions for asymptotic tightness.

We estimate sample complexity of such recursions which is used for
step-size selection.
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Problem 3

Function approximation error bound for risk-sensitive RL

Risk-sensitive cost:

lim sup
n→∞

1

n
ln
(
E [e

∑n−1
m=0 c(Xm,Xm+1)]

)
.

The Poisson equation here is multiplicative i.e. it is a non-linear
eigenvalue equation.

The eigenvalue is the Perron-Frobenius(PF) one.

The corresponding RL algorithm [6] with function approximation also
converges to a PF eigenvalue of a non-negative matrix.

We give several bounds between the original cost and approximated
cost.

6
A. Basu, T. Bhattacharya, V.S.Borkar. 2008. A Learning Algorithm for Risk-Sensitive Cost . Mathematics of Operations

Research 33(4) 880-898.
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Thank You.
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