Stochastic Approximation with Markov Noise *Analysis and applications*

Prasenjit Karmakar & Shalabh Bhatnagar Department of Computer Science and Automation, IISC Bangalore

pkarmakar6@gmail.com

Stochastic Approximation and Ordinary Differential Equation (**O.D.E**) method

• Sequential methods for finding a zero or minimum of a function where only the noisy observations of the function values are available.

• Iteration:

 $\theta_{n+1} = \theta_n + a(n)[h(\theta_n) + M_{n+1}], n \ge 0,$

h Lipschitz, $\{M_n\}$ martingale difference sequence.

• Converges to the globally asymptotically stable equilibrium of the O.D.E $\dot{\theta}(t) = h(\theta(t))$ under

Theorem 1. Under mentioned assumptions,

 $(\theta_n, w_n) \to \cup_{\theta^* \in A_0} (\theta^*, \lambda(\theta^*))$ a.s. as $n \to \infty$.

Proof Outline. $\theta_n \xrightarrow{a.s.}$ an internally chain transitive invariant set of the differential inclusion

 $\dot{\theta}(t)\in \hat{h}(\theta(t)),$

using previous three lemmas

Lemma 3: $\dot{\tilde{\theta}}(t) = \tilde{h}(\tilde{\theta}(t), \lambda(\tilde{\theta}(t)), \tilde{\mu}(t))$

Lemma 2: $\tilde{\mu}(t) \in D^{(1)}(\tilde{\theta}(t), \lambda(\tilde{\theta}(t)))$

- reasonable assumptions such as boundedness of the iterates.
- Questions:
- What if the above o.d.e does not have a globally asymptotically stable equilibrium ?
- What if there is a non-additive Markov noise present in the vector field h ?
- What if the iterates are not known to be bounded beforehand?
- Such scenario arises in off-policy learning.

Off policy TD with linear function approximation

• Given (state, action, reward) trajectory such as

 $S_1, A_1, R_1, S_2, A_2, R_2, \ldots$

- for a behaviour policy π_b estimate value function (i.e find the TD(0) solution) for the target policy $\pi \neq \pi_b$.
- Standard temporal difference learning with linear function approximation may diverge. Also, the usual single time-scale stochastic approximation kind of argument may not be useful as the associated ordinary differential equation (o.d.e) may not have the TD(0) solution as its globally asymptotically stable equilibrium.
- Solution: TDC with importance weighting

$$\theta_{n+1} = \theta_n + a(n)\rho_n \left[\delta_n(\theta_n)\phi_n - \gamma \phi'_n \phi_n^T w_n \right],$$

$$w_{n+1} = w_n + b(n) \left[(\rho_n \delta_n(\theta_n) - \phi_n^T w_n)\phi_n \right]$$

$$\phi_n = \phi(S_n), \phi'_n = \phi(S_{n+1}), \delta_n(\theta) = R_n + \gamma \theta^T \phi'_n - \theta^T \phi_n, \rho_n = \frac{\pi(A_n | S_n)}{\pi_b(A_n | S_n)}$$

• Analyzing in single time-scale requires knowledge of stationary distribution.

• Use two time-scale framework to make sure that the O.D.Es have globally asymptotically stable

Final D.I. $\dot{\tilde{\theta}}(t) \in \hat{h}(\tilde{\theta}(t)), \hat{h}(\tilde{\theta}) = \{\tilde{h}(\tilde{\theta}, \lambda(\tilde{\theta}), \nu) : \nu \in D^{(1)}(\tilde{\theta}, \lambda(\tilde{\theta}))\}$

Novelty w.r.t the single timescale and 2 timescale analysis of Borkar

- The analysis is done under verifiable assumptions whereas some of the assumptions in Borkar's analysis is hard to verify.
- $\lambda(.)$ is a local attractor.
- Made the Lipschitz constant in the vector field depend on the state space.

Empirical Analysis of several off-policy learning algorithm

equilibrium.

• Earlier convergence analysis assumed that i.i.d samples of stationary distribution available !.

• We prove that θ_n converges to the TD(0) fixed point using the theory described in the next section

Problem 1: 2 timescale stochastic approximation with controlled Markov noise [2]

• Asymptotic analysis of the following coupled iterations:

 $\theta_{n+1} = \theta_n + a(n) \left[h(\theta_n, w_n, Z_n^{(1)}) + M_{n+1}^{(1)} \right],$ $w_{n+1} = w_n + b(n) \left[g(\theta_n, w_n, Z_n^{(2)}) + M_{n+1}^{(2)} \right],$ $Z_{n+1}^{(i)} \sim p^{(i)}(.|Z_n^{(i)}, A_n^{(i)}, \theta_n, w_n), i = 1, 2$

• $\frac{a(n)}{b(n)} \rightarrow 0$ makes it two timescale

Let $D^{(i)}(\theta, w), i = 1, 2$ be the set of all ergodic occupation measures for the prescribed θ and w. Define $\tilde{g}(\theta, w, \nu) = \int g(\theta, w, z)\nu(dz, U^{(2)})$ for $\nu \in P(S^{(2)} \times U^{(2)})$.

Specific Assumptions for two timescale analysis

Faster D.I. $\forall \theta \in \mathbb{R}^d$, the differential inclusion

 $\dot{w}(t) \in \hat{g}_{\theta}(w(t))$

has a singleton global attractor (g.a.) $\lambda(\theta)$ where $\lambda : \mathbb{R}^d \to \mathbb{R}^k$ is a Lipschitz map with constant K. Here $\hat{g}_{\theta}(w) = \{\tilde{g}_{\theta}(w, \nu) : \nu \in D^{(2)}(\theta, w)\}$. Most important assumption as it links the fast and slow iterates.

Slower D.I. The inclusion

Figure 1: Comparison between TD(0), OFFTDC and ONTDC for Baird's counterexample

Problem 2: Relaxing the boundedness of the iterates assumption [3]

- Extension of lock-in probability to Markov noise (first single timescale and then a special case of 2 timescale).
- For sufficiently large n_0 calculate lower bound of

 $P(\theta_n \to H | \theta_{n_0} \in B)$

for a compact $\overline{B} \subset G$ with H being an asymptotically stable attractor of the corresponding o.d.e and G is the domain of attraction.

- The boundedness of the iterates is replaced by asymptotic tightness of the iterates.
- We also give Lyapunov type conditions for asymptotic tightness.
- This, in turn, is shown to be useful in analyzing the *tracking ability* of general adaptive algorithms.
- We estimate sample complexity of such recursions which is used for step-size selection.

Problem 3: Function approximation error bound for risk-sensitive reinorcement learning (RL) [1]

• Risk-sensitive cost:

 $\theta(t) \in \hat{h}(\theta(t)))$ has a g.a. set A_0 . Here $\hat{h}(\theta) = \{\tilde{h}(\theta, \lambda(\theta), \nu) : \nu \in D^{(1)}(\theta, \lambda(\theta))\}.$ Stability $\sup_n(\|\theta_n\| + \|w_n\|) < \infty$ a.s.

Main Results

Introduce Dirac Measure Process: $\mu(t) = \delta_{Z_n^{(i)}}$ when $t \in [t(n), t(n+1))$. Lemma 1 (Tracking Lemma). *Consider the non-autonomous O.D.E.*

 $\dot{\theta}(t) = \tilde{h}(\theta(t), \lambda(\theta(t)), \mu(t)) \tag{1}$

Let $\bar{\theta}(.)$ be the piecewise linear interpolated trajectory of the slower iterate and $\theta^s(t), t \ge s$ denote the solution to (1) with $\theta^s(s) = \bar{\theta}(s)$, for $s \ge 0$. Then $\bar{\theta}(.)$ tracks the above O.D.E. Lemma 2 (Limit of the Dirac measure Process). Almost surely every limit point of $(\mu(s + .), \bar{\theta}(s + .))$ as $s \to \infty$ is of the form $(\tilde{\mu}(\cdot), \tilde{\theta}(\cdot))$, where $\tilde{\mu}(\cdot)$ satisfies $\tilde{\mu}(t) \in D^{(1)}(\tilde{\theta}(t), \lambda(\tilde{\theta}(t)))$. Lemma 3 (Lemma linking $\tilde{\mu}(\cdot)$ and $\tilde{\theta}(\cdot)$). $\tilde{\theta}(\cdot)$ satisfies the above mentioned O.D.E with $\mu(\cdot)$ replaced by $\tilde{\mu}(\cdot)$

- The Poisson equation here is multiplicative i.e. it is a non-linear eigenvalue problem.
 The eigenvalue is the Perron-Frobenius (PF) one.
- The corresponding RL algorithm with function approximation also converges to a PF eigenvalue of a non-negative matrix.
- We give several bounds between the original cost and approximated cost.

References

- [1] P.Karmakar and S.Bhatnagar. A note on the function approximation error bound for risk-sensitive reinforcement learning. *https://arxiv.org/abs/1612.07562*.
- [2] P.Karmakar and S.Bhatnagar. Two Time-scale Stochastic Approximation with Controlled Markov noise and Off-policy Temporal Difference Learning. *Mathematics of Operations Research (accepted)*, 2017.
- [3] P.Karmakar, S.Bhatnagar, and A.Ramaswamy. Dynamics of stochastic approximation with Markov iterate-dependent noise with the stability of the iterates not ensured. *https://arxiv.org/abs/1601.02217*.

Analysis of Stochastic Approximation with Markov Noise and applications

Prasenjit Karmakar Advisor: Prof. Shalabh Bhatnagar Department of Computer Science and Automation

7th April, 2017

2 Application 1: Off policy TD with linear function approximation

Stochastic Approximation

- Sequential methods for finding a zero or minimum of a function where only the noisy observations of the function values are available.
- Example: find zero of the function $F(\theta) = E[g(\theta, \eta)]$
 - Distribution of η unavailable.
 - But, simulated i.i.d samples $\eta_n, n \ge 1$ of η are available.
 - Algorithm: $\theta_{n+1} = \theta_n + a(n)g(\theta_n, \eta_{n+1}).$
 - $g(\theta_n, \eta_{n+1}) = F(\theta_n) + M_{n+1}$.
 - Martingale Difference: $M_{n+1} = g(\theta_n, \eta_{n+1}) E[g(\theta_n, \eta_{n+1})|\mathcal{F}_n].$
 - $\mathcal{F}_n = \sigma(\theta_m, \eta_m, m \leq n).$

Ordinary Differential Equation (O.D.E) Method

For any T > 0, $\sup_{t \in [s,s+T]} \|\overline{\theta}(t) - \theta^s(t)\| \to 0$, a.s. as $s \to \infty$.

• O.D.E: $\dot{\theta}(t) = F(\theta(t))$.

Almost sure convergence of the algorithm

- possible to tell whether zero's of F are globally asymptotically stable equilibrium of the above o.d.e without knowing F explicitly. e.g.
 F = -∇f then {∇f = 0} is the such a set.
- Conclusion[1]: Algorithm converges to the required zero of F(.).
- What if the o.d.e does not have a globally asymptotically stable equilibrium ?
 - sometimes (!) analyzing in 2-timescale helps.

¹V.S.Borkar. Stochastic Approximation : A Dynamic Systems Viewpoint. Cambridge University Press. 2008

2 timescale stochastic approximation

(slow) $\theta_{n+1} = \theta_n + a(n)h(\theta_n, w_n, \eta_n^{(1)}),$ (fast) $w_{n+1} = w_n + b(n)g(\theta_n, w_n, \eta_n^{(2)})$

- $\frac{a(n)}{b(n)} \rightarrow 0$ makes it two timescale.
- What if $\eta_n^{(i)}$ are Markov noise, they cannot be converted to martingale difference.
- Source of Markov noise
 - Parametrization of value function: $V_{\theta} = \theta^T \phi$.
 - $\{X_n\}$ present in the algorithm rather than $I_{\{X_n=i\}}$ (non-parametric case).
- Previous work: assumes that i.i.d samples of stationary distribution available !

۲

Our contributions

- Convergence analysis of two time-scale stochastic approximation with controlled Markov noise assuming stability i.e. sup_n(||θ_n|| + ||w_n||) < ∞ a.s.[2]
- Apply a special case of our results to solve the well-known off-policy convergence problem for TD with linear parametrization.
- Convergence analysis of such recursions without assuming the stability of the iterates [3].
- Function Approximation error bound for risk-sensitive reinforcement learning [4].

²P.Karmakar and S.Bhatnagar. accepted in Mathematics of Operations Research

³P.Karmakar, S.Bhatnagar and A. Ramaswamy https://arxiv.org/abs/1601.02217

⁴P.Karmakar and S.Bhatnagar https://arxiv.org/abs/1612.07562

2 Application 1: Off policy TD with linear function approximation

3 Problem 2

What is Off-policy TD convergence problem ?

• Given (state, action, reward) pairs

 $S_1, A_1, R_1, S_2, A_2, R_2, \ldots$

for a behaviour policy π_b estimate value function for the target policy $\pi \neq \pi_b$.

- Need to design an on-line algorithm which converges to the TD(0)-fixpoint.
- Algorithm: TDC with importance weighting [5]

$$\begin{aligned} \theta_{n+1} &= \theta_n + a(n)\rho_n \left[\delta_n(\theta_n)\phi_n - \gamma \phi'_n \phi_n^T w_n \right], \\ w_{n+1} &= w_n + b(n) \left[(\rho_n \delta_n(\theta_n) - \phi_n^T w_n)\phi_n \right] \\ \phi_n &= \phi(S_n), \phi'_n = \phi(S_{n+1}), \delta_n(\theta) = R_n + \gamma \theta^T \phi'_n - \theta^T \phi_n, \rho_n = \frac{\pi(A_n|S_n)}{\pi_b(A_n|S_n)} \end{aligned}$$

 We analyze in 2-timescale to make sure that the o.d.e's have globally asymptotically stable equilibrium.

⁵H. R. Maei. 2011. Gradient temporal-difference learning algorithms. University of Alberta.

2 Application 1: Off policy TD with linear function approximation

Problem 2

Relaxing the stability of the iterates assumption

- Extension of lock-in probability to Markov noise.
- For sufficiently large n_0 calculate lower bound of

$$P(heta_n o H | heta_{n_0} \in B)$$

for a compact \overline{B} such that $H \subset \overline{B} \subset G$ with H being an asymptotically stable attractor of the corresponding o.d.e and G is the domain of attraction.

- The boundedness of the iterates is replaced by asymptotic tightness of the iterates.
- We also give Lyapunov type conditions for asymptotic tightness.
- We estimate sample complexity of such recursions which is used for step-size selection.

2 Application 1: Off policy TD with linear function approximation

Function approximation error bound for risk-sensitive RL

• Risk-sensitive cost:

$$\limsup_{n\to\infty}\frac{1}{n}\ln\left(E[e^{\sum_{m=0}^{n-1}c(X_m,X_{m+1})}]\right).$$

- The Poisson equation here is multiplicative i.e. it is a non-linear eigenvalue equation.
- The eigenvalue is the Perron-Frobenius(PF) one.
- The corresponding RL algorithm [6] with function approximation also converges to a PF eigenvalue of a non-negative matrix.
- We give several bounds between the original cost and approximated cost.

⁶A. Basu, T. Bhattacharya, V.S.Borkar. 2008. A Learning Algorithm for Risk-Sensitive Cost. Mathematics of Operations Research 33(4) 880-898.

Thank You. Questions ?