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Stochastic Approximation and Ordinary Differential Equation Theorem 1. Under mentioned assumptions,
(O.D.E) method (On, wn) = Ugec 4, (07, A(07))a.s. as n — oo.
e Sequential methods for finding a zero or minimum of a function where only the noisy observations Proof Outline. 6, == an internally chain transitive invariant set of the differential inclusion

of the function values are available.

0(t) € h(0(t)),

e [teration:
On+1 = On +a(n)[h(0n) + My 11],n = 0,

h Lipschitz, { M,, } martingale difference sequence.

using previous three lemmas L]

~

e Converges to the globally asymptotically stable equilibrium of the O.D.E #(t) = h((t)) under Lemma 3: é(t) = h(6(t), \(6(2)), i(t)) Lemma 2: fi(t) € DW(G(t), A(A(t)))

reasonable assumptions such as boundedness of the iterates.
e Questions:

— What 1f the ab d.ed th loball totically stabl ilibrium ? - . . - L
at if the above o.d.e does not have a globally asymptotically stable equilibrium Final D.L 6(8) € h(@(8)). (@) = Th(B.A6). 1) v DIII(Q, AG)

— What if there is a non-additive Markov noise present in the vector field i ?

_ i i ? : . . :
What if the iterates are not known to be bounded beforehand Novelty w.r.t the single timescale and 2 timescale analysis of Borkar

— Such scenario arises in off-policy learning.
e The analysis 1s done under verifiable assumptions whereas some of the assumptions 1n Borkar’s
analysis 1s hard to verity.

Off policy TD with linear function approximation o \(.) is a local attractor.

. . . M the Lipschitz constant in the vector field depend on the state space.
e Given (state,action, reward) trajectory such as e Made p Z p p

S1, A1, Ry, S0, Ag, Ry, . ..
b e T Empirical Analysis of several off-policy learning algorithm

for a behaviour policy 7, estimate value function (i.e find the TD(0) solution) for the target policy
T £ .

e Standard temporal difference learning with linear function approximation may diverge. Also, the | | |
usual single time-scale stochastic approximation kind of argument may not be useful as the associ- 30 -/ Online TDC with .

ated ordinary differential equation (o0.d.e) may not have the TD(0) solution as its globally asymp- Importance Sampling

: rer - — Offline TDC
totically stable equilibrium. — TD(0)

e Solution: TDC with importance weighting 20 |-

Onr1 = On + a(”)ﬂn [577,(971)@571 — ”Y@vaﬁbgwnI :

RMSE

10 —
wnt1 = W +b(n) | (pndn(6n) — B wn)n
w(Ap|S
Pn = ¢(S’n)> ¢Iz — ¢(Sn+1)a 571(9) = Ry + V9T¢IL _ 9T¢n7 Pn = (AnI n) — B
mp(An|Sn) 0L - i
I I I I I I
e Analyzing in single time-scale requires knowledge of stationary distribution. 0 200 400 600 800 1,000

e Use two time-scale framework to make sure that the O.D.Es have globally asymptotically stable No. of parameter update

equilibrium. Figure 1: Comparison between TD(0), OFFTDC and ONTDC for Baird’s counterexample

e Earlier convergence analysis assumed that 1.1.d samples of stationary distribution available !.

e We prove that 6,, converges to the TD(0) fixed point using the theory described in the next section

Problem 2: Relaxing the boundedness of the iterates assumption
Problem 1: 2 timescale stochastic approximation with controlled [3]

Markov noise [2]
e Extension of lock-in probability to Markov noise (first single timescale and then a special case of

e Asymptotic analysis of the following coupled iterations: 2 timescale).
} e For sufficiently large n( calculate lower bound of

P, - H|0, € B
Wy 1 = wp + b(n) [g(@n, W, ZI@QI) + MISJQJBII (6 Oy )
] : ] ] . for a compact B C G with H being an asymptotically stable attractor of the corresponding o.d.e
nl P (120" Ap”, Oy wn), i ’ and G is the domain of attraction.
o % — 0 makes it two timescale e The boundedness of the iterates 1s replaced by asymptotic tightness of the iterates.

. | . . . e We also give Lyapunov type conditions for asymptotic tightness.
Let DIZ)(Q, w),t = 1,2 be the set of all ergodic occupation measures for the prescribed 6 and w.

Define §(0,w,v) = [ g(6,w, 2)v(dz, U(2)> for v € P 5(2) 5 UIQI). e This, in turn, 1s shown to be useful in analyzing the tracking ability of general adaptive algorithms.

e We estimate sample complexity of such recursions which 1s used for step-size selection.

Specific Assumptions for two timescale analysis

Faster D.I V0 € RY, the differential inclusion Problem 3: Function approximation error bound for risk-sensitive
W(t) € go(w(t)) reinorcement learning (RL) [1]
has a singleton global attractor (g.a.) A(f) where A : RY — R is a Lipschitz map with constant e Risk-sensitive cost:
K. Here gg(w) = {gg(w,v) : v € DIQI(H, w)}. Most important assumption as it links the fast and 1 _—
slow iterates. limsup —In (EIGZm—O C(Xm’XmHII) -
n—oo N
Slower D.I. The inclusion
9@) c ﬁ(@(t))) e The Poisson equation here is multiplicative 1.e. it is a non-linear eigenvalue problem.
has a g.a. set Ay. Here ﬁ(@) _ {M@’ A0),v) v e D(II(H, A(0))). e The eigenvalue 1s the Perron-Frobenius (PF) one.
Stability sup, (||0,]| + [lwnl) < oo ass. e The corresponding RL algorithm with function approximation also converges to a PF eigenvalue
" of a non-negative matrix.
Main Results e We give several bounds between the original cost and approximated cost.
Introduce Dirac Measure Process: (u(t) = ¢ 70 when t € [t(n),t(n+ 1)). Ref
, , crerences
Lemma 1 (Tracking Lemma). Consider the non-autonomous O.D.E.
(9@) _ ’;L( O(1), \(O(1)), u(t)) (1) [1] P.Karmakar and S.Bhatnagar. A note on the function approximation error bound for risk-sensitive

) reinforcement learning. https://arxiv.org/abs/1612.07562.
Let 0(.) be the piecewise linear interpolated trajectory of the slower iterate and 0°(t),t > s denote

° e [2] P.Karmakar and S.Bhatnagar. Two Time-scale Stochastic Approximation with Controlled Markov
the solution to (1) with 0°(s) = 0(s), for s > 0. Then 0(.) tracks the above O.D.E.

noise and Off-policy Temporal Difference Learning. Mathematics of Operations Research (ac-

Lemma 2 (Limit of the Dirac measure Process). Almost surely every limit point of (ju(s +.),0(s +.)) cepted), 2017.

: - 5 - : - N/ A ~
as s — oo is of the form (fi(-), 0(-)), f"he’” € ful-) satisfies [i(t) € D ( I(@@)) A0(t))). [3] P.Karmakar, S.Bhatnagar, and A.Ramaswamy. Dynamics of stochastic approximation
Lemma 3 (Lemma linking /i(-) and 6(+)). 8(-) satisfies the above mentioned O.D.E with u(-) replaced with Markov iterate-dependent noise with the stability of the iterates not ensured.

by fi(-) https://arxiv.org/abs/1601.02217.
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Introduction

Stochastic Approximation

@ Sequential methods for finding a zero or minimum of a function
where only the noisy observations of the function values are available.

e Example: find zero of the function F(0) = E[g(0,n)]
Distribution of 7 unavailable.

But, simulated i.i.d samples 7,,, n > 1 of 7 are available.
Algorithm: 0,1 = 0, + a(n)g(0n, Nns1)-

g(0n,Mnv1) = F(0n) + M1

Martingale Difference: Myy1 = g(0n, nt+1) — E[g(0n, Nnt1)|Fn]-
Fn = 0(0m, Nm, m < n).
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Ordinary Differential Equation (O.D.E) Method

Algorithm  8(¢)
berte o= (t)
trajectory

a(o) a(o)+a(1) a(o)+a()+a(2)

For any T > 0, sup,ci. .1 [10(2) — 0 (¢)|| = 0, a.s. as s — oo.

e O.D.E: 4(t) = F(6(t)).
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Introduction

Almost sure convergence of the algorithm

@ possible to tell whether zero's of F are globally asymptotically stable
equilibrium of the above o.d.e without knowing F explicitly. e.g.
F = —Vf then {Vf = 0} is the such a set.

@ Conclusion|1]: Algorithm converges to the required zero of F(.).

@ What if the o.d.e does not have a globally asymptotically stable
equilibrium 7
e sometimes (!) analyzing in 2-timescale helps.

V.S.Borkar. Stochastic Approximation : A Dynamic Systems Viewpoint. Cambridge University Press. 2008
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Introduction

2 timescale stochastic approximation

(slow) Opy1 = 6, + a(n)h(6n, w, 7721)):
(fast) w1 = wp + b(n)g(0n, wh, 77:(12))

° % — 0 makes it two timescale.

o What if n,(,i) are Markov noise, they cannot be converted to
martingale difference.

@ Source of Markov noise

o Parametrization of value function: Vjy =67 ¢.
o {X,} present in the algorithm rather than /{x _j; (non-parametric
case).

@ Previous work: assumes that i.i.d samples of stationary distribution
available !
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Introduction

Our contributions

@ Convergence analysis of two time-scale stochastic approximation with
controlled Markov noise assuming stability i.e.
sup,([|0all + llwal) < o0 a.s.[2]

@ Apply a special case of our results to solve the well-known off-policy
convergence problem for TD with linear parametrization.

@ Convergence analysis of such recursions without assuming the
stability of the iterates

@ Function Approximation error bound for risk-sensitive reinforcement
learning [4].

2P.Karmakar and S.Bhatnagar. accepted in Mathematics of Operations Research
3

4 ~ R I
P.Karmakar and S.Bhatnagar https://arxiv.org/abs/1612.07562
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Application 1: Off policy TD with linear function approximation
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© Application 1: Off policy TD with linear function approximation
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Application 1: Off policy TD with linear function approximation

What is Off-policy TD convergence problem ?

e Given (state, action, reward) pairs
517 Al-, Rl: 527 A27 R2s oo
for a behaviour policy 7, estimate value function for the target policy
™ 7£ Tp-

@ Need to design an on-line algorithm which converges to the
TD(0)-fixpoint.

@ Algorithm: TDC with importance weighting [5]
Oni1=0,+ a(”)ﬂn [§n(9n)¢n - 7¢;¢Z—Wn] )
Wni1 = Wp + b(n) [(pnén(en) - ¢,Z—Wn)¢n}
_ - _ T T — T (AnlSn)
¢n - ¢(Sn)a ¢n - ¢(5n+1)76n(9) - Rn + 76 ¢n 9 (bnapn - Wb(An‘Sn)

o We analyze in 2-timescale to make sure that the o.d.e's have globally
asymptotically stable equilibrium.
5

H. R. Maei. 2011. Gradient temporal-difference learning algorithms. University of Alberta.
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Problem 2

Relaxing the stability of the iterates assumption

@ Extension of lock-in probability to Markov noise.

o For sufficiently large ng calculate lower bound of
P60, — H|0,, € B)

for a compact B such that H C B C G with H being an
asymptotically stable attractor of the corresponding o.d.e and G is
the domain of attraction.

@ The boundedness of the iterates is replaced by asymptotic tightness
of the iterates.

@ We also give Lyapunov type conditions for asymptotic tightness.

@ We estimate sample complexity of such recursions which is used for
step-size selection.
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Problem 3

Presentation Outline
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Problem 3

Function approximation error bound for risk-sensitive RL

Risk-sensitive cost:

1 n—1
1 — Zm: C(Xm’Xm 1)
limsup p In (E[e 0 + ]) :

n—oo

@ The Poisson equation here is multiplicative i.e. it is a non-linear
eigenvalue equation.

@ The eigenvalue is the Perron-Frobenius(PF) one.

@ The corresponding RL algorithm with function approximation also
converges to a PF eigenvalue of a non-negative matrix.

@ We give several bounds between the original cost and approximated
cost.

Prasenjit Karmakar Analysis of Stochastic Approximation with Markov Noise and applications 13 / 14



Thank You.
Questions ?



	Introduction
	Application 1: Off policy TD with linear function approximation
	Problem 2
	Problem 3

