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Comparison of energy storage elements

@ Advantages over batteries:
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@ Greater reliability

@ Uses non-corrosive electrolytes and low material toxicity
@ Has higher power density, Low cost per cycle

@ Low ESR => Fast charging and discharging
o

Low ESR => Low heating levels during charging and discharging

Disadvantages over batteries:
@ Lower energy density
@ Greater self-discharge (Always needs a power conv. for regulating the voltage)
@ High voltage drop
o

Low ESR leads to rapid discharge when shorted
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Ultracapacitor stack addresses:

e Short duration black-outs

e Peak power demands

e Load leveling the battery
packs in EV/HEV.

Ultracapacitors used widely in

power quality improvement,
traction, EV/HEV etc;

Power Supply for momentary power mains failures
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Since, supply and UC stack side voltages are quite close, the topology chosen is
a non-isolated bidirectional converter.

UCs has a potential to replace batteries for light energy density applications.

UC based backup systems can be used in both grid connected or stand alone
applications.

Buck converter during charging, boost converter during discharging.

During charging, UC stack voltage V. is regulated. During discharging,
output voltage V,, is regulated.

PWM blocking for seamless mode transition

UC based converters have two operating modes - a) charging mode, b)
discharging mode.

Inner current loop
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e Both operating modes have different control
structures.
e However, the two states share the same physical
elements of converter.
e This necessitates a mode transition logic.
Charging  Discharging e Smooth, seamless and fast transition between
control modes is crucial.
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PWM blocking acts as a mode transition logic.
How long PWM blocking should be done?
This is decided by mode identification algorithm.

The proposed algorithm decides the control modes
accurately.

The algorithm is based on local parameters inductor
current, 27, and output voltage, V.

Mode identification algorithm
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Table: Logic conditions for mode identification. @ Voltage and current hysteresis
Time durations ir Vo, State included.
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Smooth and seamless transition between control modes is achieved.
Accurate mode identification is performed using mode identification algorithm.

The proposed control allows decoupled controls for both operating modes.

During PWM blocking, no control on dynamics of inductor current 7r,.

e An alternate virtual resistance based control allows complete control
over time duration, inductor current 77, dynamics during mode transition.

e Prevents undue stress on switches and inductor unlike PWM blocking
control in case of error mode identification.

Simplified modelling of ultracapacitors

@ UCs are usually modelled as series/parallel RC networks.
@ Modelling of UC as a large capacitance in series with ESR is quite popular.

@ Here, modelling of UC as a variable voltage source is studied.
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(d) transmission-line model

(e) voltage source model

Motivation for modelling of ultracapacitors

Ultracapacitors as variable voltage sources

Table: Experimental set-up for UC based bidirectional dc-dc converter.

Hardware details

Filter inductor, L 300uH
Filter capacitor, C 2000pF
UC stack'capacitance Cye, ESR Ry 12.5F. 0.20
Maximum Power, Supply Voltage V,, fsw | 200W, 26V, 100kH 2

T UC stack has 12 Mazwell BCAPO0150 ultracapacitors in series.
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@ Here, the approximation C,.R7 > L would be valid, allowing A2 = 0, and

. =3
M o= =L

@ Also, the two eigen values are well separated. The quadratic systems with well
separated eigen values are discussed in 2.
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@ In this work, it is shown UCs can be modelled as a 1°* order system.
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‘Scope of this work

@ (Qualitative and quantitative comparison of the proposed variable voltage

source model with series RC model.

For this comparison, comparison metrics

e F' and () parameters

e the z-domain current loop plant transfer function, iL(2)

d(z)
Validation of comparison metrics over wide range of design voltage, power
levels and sampling frequencies.

are used.

Limiting operating voltage and power levels for different UC stack and
converter designs for the proposed voltage source model.

The corresponding controller design and experimental verification.
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minimal.
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The comparison metrics are dependent on circuit parameters.

P,e (100W,100kW), V,€ (30V,1000V)

Comparison using z-domain bode plots

ir (2)

30 for both

@ The transfer functions of a buck converter feeding a UC stack,

the models are derived in z-domain.
Usually, the control is implemented in digital platform.

The non-idealities and other delays such as sampling and PWM delays can also
be readily incorporated in the z-domain models.

z-domain transfer functions obtained from continous time state space models.
o

3\ Vhy use exact discretization?

@ The comparison of % for both the models is performed for wide range of

design and operating conditions.

@ Discretization methods such as Forward and Backward Euler, Tustin’s method

is not accurate for wide range of sampling frequencies, fs>.

‘F L Lewis, Applied Optimal Control Estimation: Digital Design & Implementation,

ser. Prentice Hall and Texas Instruments digital signal processing series. Prentice-Hall,
1992.

omall signal analysis for plant model

A T. 2 AoTs(1—d) M Ts(1—d)
@ Model 2: “f(z) :Vg c =

10

‘Advantages of adaptive control

10° 10 10
Frequency (Hz)

10 Ch.2: Vi 5V/div., Ch.3: V. 5V/div., time scale: 20s/div.|

Adaptive control for discharging mode of operation

UC stack
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@ The control structure should accommodate for variation in:

e plant characteristics
e RHP zero especially due to UC stack deep discharging.

@ The controller gains are estimated on-line.

@ The proposed control ensures best performance criteria possible.

@ Adaptive control incorporates the variation of RHP zero and varies the

bandwidth accordingly®.
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Conclusions and Contributions

Mode identification algorithm based on PWM blocking has been proposed
which ensures:

e Fastest mode transition.

e Smooth, seamless mode transition.

@ Accurate identification of control modes.

Alternately, virtual resistance control is proposed which allows control on
current dynamics during mode transition as well.

Simplified voltage source model for UCs similar to batteries have been
proposed and verified which simplifies the controller design.

The possibility of using this simplified model have been studied for wide range
of design applications.

For this, a generalized passives design is carried out where the variation of
passives for various design applications is carried out.

An adaptive control has been proposed which allows online variation of

controller gains to accommodate system characteristics and RHZ variation.
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Comparison of energy storage elements
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@ Advantages over batteries:

Greater reliability

Uses non-corrosive electrolytes and low material toxicity
Has higher power density, Low cost per cycle

Low ESR => Fast charging and discharging

Low ESR => Low heating levels during charging and discharging
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@ Advantages over batteries:

Greater reliability

Uses non-corrosive electrolytes and low material toxicity
Has higher power density, Low cost per cycle

Low ESR => Fast charging and discharging

Low ESR => Low heating levels during charging and discharging

@ Disadvantages over batteries:

Lower energy density
Greater self-discharge (Always needs a power conv. for regulating the voltage)
High voltage drop

Low ESR leads to rapid discharge when shorted 1
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@ Ultracapacitor stack addresses:
@ Short duration black-outs
@ Peak power demands
@ Load leveling the battery
packs in EV/HEV.
@ Ultracapacitors used widely in

power quality improvement,
traction, EV/HEV etc;




Ultracapacitor based backup systems
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Ultracapacitor bank discharging
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de-dc converter

Ride through provision

@ Ultracapacitor stack addresses:
@ Short duration black-outs
@ Peak power demands
@ Load leveling the battery
packs in EV/HEV.
@ Ultracapacitors used widely in

power quality improvement,
traction, EV/HEV etc;




Power Supply for momentary power mains failures

Two port network
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@ UCs has a potential to replace batteries for light energy density applications.

@ UC based backup systems can be used in both grid connected or stand alone

applications.

@ A non-isolated bidirectional converter is chosen since supply and UC stack side

voltages are quite close.



Power Supply for momentary power mains failures

Two port network
SW2 — SW3
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SW1 Critical Load

UCs has a potential to replace batteries for light energy density applications.

UC based backup systems can be used in both grid connected or stand alone
applications.

A non-isolated bidirectional converter is chosen since supply and UC stack side
voltages are quite close.

System operates as buck converter during charging, boost converter during
discharging.

During charging, UC stack voltage V.. is regulated. During discharging,
output voltage V, is regulated.



List of contributions

@ PWM Blocking control for seamless mode transition
© Virtual resistance control for seamless mode transition
© Reduced order modelling of ultracapacitors

@ Generalized passives design for UC based backup system

@ Adaptive control during discharging mode of operation with
enhanced performance
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PWM blocking for seamless mode transition

@ UC based converters have two operating modes - a) charging mode, b) discharging

mode.
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PWM blocking for seamless mode transition

@ UC based converters have two operating modes - a) charging mode, b) discharging
mode.

s Inner current loop
ﬁ ire i (s)iL(s) ‘./O(S> Vo(s)
d(s) ir(s)
Vo(s)

Discharging mode




PWM blocking for seamless mode transition

@ UC based converters have two operating modes - a) charging mode, b) discharging

mode.

Charging

Ev

Lhoostmazx

Inner current loop

ip (s)[2t

Vo(s)

Vol(s)

d(s)

’iL(S)

Discharging mode

Discharging|

@ Both operating modes have similar control structures
but different control objectives.

@ However, the two states share the same physical

elements of converter.

o This necessitates a mode transition logic between control

modes.

modes is crucial.

Smooth, seamless and fast transition between control



PWM blocking for seamless mode transition

@ UC based converters have two operating modes - a) charging mode, b) discharging

mode.
Thoostmaz Inner current loop
ﬁ ire i (s)iL(s) ‘./O(S> Vo(s)
d(s) ir(s)
Vo(s)
Discharging mode
Ey=Ez 01 B2

o PWM blocking acts as a mode transition logic.

PWMBIlocking ¢ How long PWM blocking should be done?
@ This is decided by mode identification algorithm.

@ The proposed algorithm decides the control modes
accurately.

@ The algorithm is based on local parameters inductor
current, 77, and output voltage, V.



Mode identification algorithm
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Mode identification algorithm
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Table: Logic conditions for mode identification.
Time durations ir Vo State
0<t<ty i<ty | Vo>W+AV Charging mode (S1)
ty<t<ty ip<lIrg | Vo<V,—AV | Charging-Discharging tr. (S2)
to<t<ts ip>—Iry | Vo<V—AV Discharging mode (S3)
ty<t<ty ir>Irg | Vo>Vp+AV | Discharging-Charging tr. (S2)




Mode identification algorithm
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Table: Logic conditions for mode identification. @ Voltage and current hysteresis
Time durations ir Vo State included.

0<t<ty ir<Iry | Vo>VptAV Charging mode (S1) @ This reduces error mode
ti<t<ts ip<Irpg | Vo<V,—AV | Charging-Discharging tr. (S2) identification.
to<t<ts ip>—Irg | Vo<V—AV Discharging mode (S3)
t3<t<ts ip,>Irg | Vo>V,+AV | Discharging-Charging tr. (S2) @ Fastest mode transition using

PWM blocking.



Experimental results for PWM blocking

1K. Saichand and V. John,“PWM block method for control of an ultracapacitor-based bidirectional
DC/DC backup system,” IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 4126-4134, Sept
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Experimental results for PWM blocking

Smooth and seamless transition between control modes is achieved.

Accurate mode identification is performed using mode identification algorithm.

The proposed control allows decoupled controls for both operating modes.

During PWM blocking, no control on dynamics of inductor current iy,.

@ A virtual resistance based control allows complete control over time

duration, inductor current i;, dynamics during mode transition®.

1K. Saichand and V. John,“PWM block method for control of an ultracapacitor-based bidirectional
DC/DC backup system,” IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 4126-4134, Sept
2016.
6/13
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Reduced order modelling of ultracapacitors

@ UCs are usually modelled as series/parallel RC networks.

@ Modelling of UC as a large capacitance in series with ESR is quite popular.

@ Here, modelling of UC as a variable voltage source is studied.
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Reduced order modelling of ultracapacitors

@ UCs are usually modelled as series/parallel RC networks.

@ Modelling of UC as a large capacitance in series with ESR is quite popular.

@ Here, modelling of UC as a variable voltage source is studied.
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Motivation for modelling of ultracapacitors

Ultracapacitors as variable voltage sources
Table: Experimental set-up for UC based bidirectional dec-dc converter.

Hardware details

Filter inductor, L 300 H
Filter capacitor, Cy 2000uF
ucC stacchapacitance Cuc, ESR Ryc 12.5F, 0.2Q2
Maximum Power, Supply Voltage Vg, fsw | 200W, 26V, 100kH z

T UC stack has 12 Mazwell BCAP0150 ultracapacitors in series.

ir(s) _ 5VgCuc _ %s = %3 2
d(s) LCucs? +RiCucs+1 2485t L (s+21)(s+X2)



Motivation for modelling of ultracapacitors

Ultracapacitors as variable voltage sources
Table: Experimental set-up for UC based bidirectional dec-dc converter.

Hardware details

Filter inductor, L 300 H
Filter capacitor, Cy 2000uF
ucC stacchapacitance Cuc, ESR Ryc 12.5F, 0.2Q2
Maximum Power, Supply Voltage Vg, fsw | 200W, 26V, 100kH z

T UC stack has 12 Mazwell BCAP0150 ultracapacitors in series.
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Motivation for modelling of ultracapacitors

Ultracapacitors as variable voltage sources
Table: Experimental set-up for UC based bidirectional dec-dc converter.

Hardware details

Filter inductor, L 300 H
Filter capacitor, Cy 2000uF
ucC stacchapacitance Cuc, ESR Ryc 12.5F, 0.2Q2
Maximum Power, Supply Voltage Vg, fsw | 200W, 26V, 100kH z

T UC stack has 12 Mazwell BCAP0150 ultracapacitors in series.

ir(s) _ 5VgCuc _ %s = %3 2
d(s) LCucs? +RiCucs+1 2485t L (s+21)(s+X2)
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@ Here, the approximation Cuch > L would be valid, allowing A2 = 0, and A\; = =



Motivation for modelling of ultracapacitors

Ultracapacitors as variable voltage sources
Table: Experimental set-up for UC based bidirectional dec-dc converter.

Hardware details

Filter inductor, L 300 H
Filter capacitor, Cy 2000uF
ucC stacchapacitance Cuc, ESR Ryc 12.5F, 0.2Q2
Maximum Power, Supply Voltage Vg, fsw | 200W, 26V, 100kH z

T UC stack has 12 Mazwell BCAP0150 ultracapacitors in series.

ir(s) _ 5VgCuc _ %s = %3 2
d(s) LCucs? +RiCucs+1 2485t L (s+21)(s+X2)

R 1 [CucR? —4L R 1 [CucR? —4L
M= TR T o 666.268, Ao = — ok p [ ML T 04
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L

@ Here, the approximation Cuch > L would be valid, allowing A2 = 0, and A\; = =



Comparison using z-domain bode plots

@ The transfer functions of a buck converter feeding a UC stack, %25)2 for both the
models are derived in z-domain.

@ Usually, the control is implemented in digital platform.

@ The non-idealities and other delays such as sampling and PWM delays can also be
readily incorporated in the z-domain models.

@ 2-domain transfer functions obtained from continous time state space models.

3F‘.L. Lewis, Applied Optimal Control Estimation: Digital Design & Implementation, ser. Prentice

Hall and Texas Instruments digital signal processing series. Prentice-Hall, 1992.
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Comparison using z-domain bode plots

@ The transfer functions of a buck converter feeding a UC stack, %25)2 for both the
models are derived in z-domain.

@ Usually, the control is implemented in digital platform.

@ The non-idealities and other delays such as sampling and PWM delays can also be
readily incorporated in the z-domain models.

@ 2-domain transfer functions obtained from continous time state space models.

@ The comparison of %zi)l for both the models is performed for wide range of design

and operating conditions.

@ Discretization methods such as Forward and Backward Euler, Tustin’s method are

not accurate for wide range of sampling frequencies, fs°.

@ The comparison metrics are dependent on circuit parameters.

@ P,c (100W,100kW), Vy€ (30V,1000V)

3F‘.L. Lewis, Applied Optimal Control Estimation: Digital Design & Implementation, ser. Prentice

Hall and Texas Instruments digital signal processing series. Prentice-Hall, 1992.
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Comparison of Zg(i )) for the two UC models
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Figure: Bode plots comparing the three models for Figure: Bode plots for current loop plant transfer

Po=200W, V3=30V. functions with PI control for Model 1 and Model 3.

Model 2 and Model 3 match closely which shows that A2~/0 is a valid approximation.

For a given design application, Model 1 and Model 3 diverge especially at low
frequency regions.

@ The deviation between the two models reduces due to high gain of PI controller at
low frequencies.

@ The high frequency characteristics determines the stability and bandwidth.

@ Phase margin of 70° and bandwidth of 10kH z is achieved.

10



Comparison of *

(( )) for the two UC models
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@ Charging mode inner current loop bandwidth, f, = In AL
g
@ Settling time, At of 70us is observed based on which bandwidth of 9kH z is achieved.
@ This verifies the dynamic performance of the designed inner loop current control.
@ UC stack is charged in CC mode. The charging profile shows the stability of the
designed current control.
. . . A‘/’LLC .
@ The charging duration can be verified by Cyc AL ir,
c
@ The UC stack voltage, Vi, and charging current, iy, is chosen to be low, so that

charging duration, At. would be sufficiently high.



List of works

@ Generalized passives design for UC based backup system
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Necessity and contributions

@ Why particularly necessary in UC based storage systems??

@ Batteries treated as fixed voltage sources.

@ UC stack undergo greater depth of discharge.

o Converter design should accommodate wide range of operating conditions.

K. Saichand and V. John, “A generalized design procedure for passives in a ultracapacitor based
bidirectional DC-DC system for backup power applications,” in Thirteenth Annual IEEE INDICON, 2016.
IEEE Bangalore Section, 2016.
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Necessity and contributions

@ Why particularly necessary in UC based storage systems??

@ Batteries treated as fixed voltage sources.

@ UC stack undergo greater depth of discharge.

o Converter design should accommodate wide range of operating conditions.

Converter design should accommodate wide variation in UC stack voltage, V.

The converter and passives’ design should also accommodate for both the charging
and discharging operating modes.

@ Generalized design of passives is necessary:
@ To validate any proposed ultracapacitor model,

@ For performance studies on a UC based dc/dc systems for wide range of design

applications.?.

@ Crucial in modeling of ultracapacitors and in design of adaptive control.

K. Saichand and V. John, “A generalized design procedure for passives in a ultracapacitor based
bidirectional DC-DC system for backup power applications,” in Thirteenth Annual IEEE INDICON, 2016.
IEEE Bangalore Section, 2016.
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Adaptive control for discharging mode of operation
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5K. Saichand and V. John, “Adaptive control strategy for ultracapacitor based bidirectional DC-DC
converters,” accepted for publication in Applied Power Electronics Conference. Tampa, Florida:

APEC-2017, March 2017, pp. 1-6.



Adaptive control for discharging mode of operation
L

UC stack L 7 -l-SW2 v
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@ The control structure should accommodate for variation in:
@ plant characteristics
@ RHP zero especially due to UC stack deep discharging.

@ The controller gains are estimated on-line.

@ The proposed control ensures best performance criteria possible.

@ Adaptive control incorporates the variation of RHP zero and varies the bandwidth

accordingly®.

5K. Saichand and V. John, “Adaptive control strategy for ultracapacitor based bidirectional DC-DC
converters,” accepted for publication in Applied Power Electronics Conference. Tampa, Florida:

APEC-2017, March 2017, pp. 1-6.
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Conclusions and Contributions

Mode identification algorithm based on PWM blocking has been proposed
which ensures:

o Fastest mode transition.
@ Smooth, seamless mode transition.
@ Accurate identification of control modes.

Alternately, virtual resistance control is proposed which allows control on
current dynamics during mode transition as well.

Simplified voltage source model for UCs similar to batteries have been
proposed and verified which simplifies the controller design.

The possibility of using this simplified model have been studied for wide range
of design applications.

For this, a generalized passives design is carried out where the variation of
passives for various design applications is carried out.

An adaptive control has been proposed which allows online variation of
controller gains to accommodate system characteristics and RHP zero

variation.
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