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1. Sparse Coding

5. fLETnet: A Deep Architecture Motivated by FISTA

» Problem statement: Given a signal y € IR” and an overcomplete
dictionary A € R™*", find an s-sparse vector x € R", s < 1, such that

y ~ Ax = Basis selection: Express y = Z xia;, |S| =s

ieS
» Solution: Seek the minimum {-(quasi)-norm solution: NP-hard

min ||x[|o subject to y = Ax
X

2. Iterative Shrinkage-Thresholding Algorithm (ISTA)

» FISTA iterations unfolded
1.z = (14 B)xt — B!
2.x' =T, (¥), where X =Wz + bfort=1,2,--- L

» fLETnet architecture:

LAYER 1 LAYER 2 LAYER L —1 LAYER L

» Relaxation techniques: Solve sparsity-regularized least-squares

X = argmxin % ly —Ax|F+ AR(x)

\—H;;_/ promotes sparsity
»ISTA update: x'*1 = Ty, (¥ —nVf (x')) nevinet vh1 _ oyt (W' +b),

where W=I—-nA"Aand b = nATy

» Our approach: Learning the activation {’ in a data-driven manner
» Advantage-1: Number of parameters to learn does not grow with n
» Advantage-2: Possible to learn a rich variety of activations and regularizers

3. Architecture and Training of LETnet

K
LETnet architecture: Model \f(u) = Z cidr(u), dr(u) = u exp (7&;73#)
k=1

LAYER 1 LAYER ¢ LAYER L

LETnet training;:
N
1
» Training cost J(c) = > Z Hx,% (4, €) — |3, where ¢ = (c';¢% - ;)
q=1

» Second-order Hessian-free optimization
>]§q) (ci+ 8 =] (ci) + 8. gi+ 16, Hi
» Compute optimal direction using conjugate-gradient (CG) at every epoch i
8¢ =argmin ;" (c; + 8) +v 5[}

» Update parameters as ¢;;1 < ¢; + 5:

» Two ingredients of CG
» Gradient g; = V](C)\ch and the Hessian-vector product Hyu, for any u
» Computing the hessian-vector product
> Ru(h(€)) = limg,o MR — Hy = R, (VeJ (0)] o,
» gi and Hju are computed using back-propagation

» Key Features of fLETnet:
» Direct links from two previous layers (second-order memory)
» Circumvents the issue of vanishing/exploding gradient
» The resulting architecture fLETnet is essentially a deep residual network
» Equivalent performance as the LETnet with half as many layers

» What regularizers does the fLETnet learn?
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6. Comparison of Testing Run-times

Algorithm |per iteration/layer run-time| # layers/ total time
(in milliseconds) iterations|(in milliseconds)

ISTA 0.0331 1000 33.10
FISTA 0.0394 1000 39.40
LETnet 0.0895 100 8.95
fLETnet 0.1088 50 5.44

MMSE-ISTA 0.6184 1000 618.40

CoSaMP 11.7672 50 588.36

IRLS 5.2784 50 263.92

7. Deep Dictionary Learning

4. Validation on Synthetic Signals

» Data generation:
» 1 =256, m = [0.7n]
»Ajj~N(0,1/m)
> X = Xsupp © Xmag, Where Xgypp ~ Bernoulli(p) and xmag ~ N(0,1)
»0 < p < 1: smaller the value of p, sparser the vector x
» A chosen optimally using cross-validation
»100 examples used for training and testing
» Performance averaged over 10 independent trials

» Reconstruction SNR and training error:
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(@) SNR;ypur = 20 dB (b) Training and validation error

» Both training and validation errors decrease; no overfitting

N
» Problem statement: Given a set of signals {y/}‘ . € R", learn an
j=

overcomplete dictionary A € R™*" and s-sparse vectors {x,}].l\il € R",
s < n, such that y; =~ Ax; for all j

‘A net,, (A)— y].Hz

»nety, (A) is the output of ISTA corresponding to the signal y; and dictionary A
» Gradient descent: A <— A — uVJ(A), VJ(A) requires only matrix-vector products
» Advantages over conventional dictionary learning algorithms:
» Online and distributed implementations
» Certain desirable properties on the dictionary, such as incoherence, can be promoted
by adding a penalty and appropriately modifying the gradient
» Performance metrics:
» Atom detection rate; Hrecovered atoms)

» Proposed approach: A = rr}‘in Z/Iil

n
n
» Distance of A from A*: k = 1 Z min (1 — |araf
n — 1<j<n ]
=

» Experimental validation:
»n =50, m = 20, sparsity s = 3, # examples N = 2000, SNRinpm =30dB
> #layers L = 200, # training epochs Nepoch = 80
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Outline

o What is sparse coding?
o lterative shrinkage-thresholding algorithms (ISTA)

» lterative unfolding and connections to deep neural networks (DNNs)

» Building a learnable model for sparse coding
@ Our contributions

» Modeling the non-linearity using a linear expansion of thresholds (LETs)

v

Parametric flexibility for designing regularizers

v

Efficient second-order (Hessian-free) optimization for learning

v

Reducing the number of layers and link with deep residual networks

v

Building a deep architecture for dictionary learning
@ Simulation results and insights

@ Summary and future works



What is sparse coding?

o Problem statement: Given a signal y € R™ and an overcomplete dictionary
A € R™" find an s-sparse vector x e R", s < n, suchthaty = Ax

xeK

o Basis selection: Express y = Z x;a;, |S|=s

i€S
» Estimating A from given data is the problem of dictionary learning

o Solution: Seek the minimum ¢,-(quasi)-norm solution: Combinatorially hard

min ||x|lo subjectto y = Ax
X

O

=

PN Gs



lterative shrinkage-thresholding algorithm (ISTA) meets neural network

@ Relaxation techniques: Solve sparsity-regularized least-squares

/N . 1
X = argmin §||y—Ax||§+ AR (x)
X N—
—_— promotes sparsity

f(x)

©

ISTA update rule (Daubechies et al., 2004)
> x1 =T, (x! - yVf(x!)), where T, denotes soft-thresholding with threshold v

@ Unfolding of ISTA iterations

xt = y' |Wx'+b|, where W=I1-5ATAandb=7A"y
i ffine
non lin. artin

@ Building learnable models

» Learn the linear transformation parameters W and b from the data —
data-intensive
» Learn the nonlinear shrinkage function

o LETnet: Modeling the activation nonlinearity using LETs

K
> LET modeling: ¢! (u) = Z c ¢k (u), where ¢k (u) = u exp (—%)
k=1



Unfolding of FISTA (Nesterov, 1980s) and the fLE Tnet

o FISTA iterations unfolded
@ 2' = (1 + )X —px'?
@ xt=wzl+b
@ xt = Ty()"(’),fort: 1,2,---,L

LAYER 1 LAYER 2 LAYER L — 1 LAYER L

o fLETnet: Network architecture motivated by FISTA

» Replace T, with a parametric activation !

» Direct links from two previous layers (second-order memory)

» -1 link: identity mapping; thus no new parameters to learn

» Circumvents the issue of vanishing/exploding gradient

» The fLETnet architecture is essentially a deep residual network (He et al., 2015)
» Results in equivalent performance as the LETnet with half as many layers



Training the LETnet and the fLETnet

o Training dataset O consists of N examples {(yq,xq)}g’:1, where
Yq = AXq + &, for agiven A
N
1
o Training cost J(¢) = 5 Z ||xg (yq, c) — Xg|5, where ¢ = (c1;cz; - ;cL)
g=1

@ Second-order optimization
» Quadratic approximation in the i" training epoch
1
JD (ci+6c) = J(c;) + 629+ E‘SzHi‘Sc
» Compute optimal direction using conjugate-gradient (CG) at every epoch i

8, = argmin S\ (ci + 6¢) + ¥ l16cl}

» Update parameters as ¢j11 « ¢; + 0,
@ Two ingredients of CG

> Gradient g; = VJ(¢)|,_,.
» Hessian-vector product H;u for any vector u, where H; = VzJ(c)|c:c,

o Ru(h(e)) = lim,o ML — Hu = Ry (Ved(e))],_,,



Experimental details and parameter settings

o Data generation

» n =256, m=1[0.7n]
Aij ~ N(0,1/m)

v

> X = Xsupp © Xmag, Where Xsypp ~ Bernoulli(p) and Xmag ~ N(0,1)

v

0 < p < 1: smaller the value of p, sparser the vector x

v

A chosen optimally using cross-validation

v

Nirain = 100 examples used for training

v

Niest = 100 examples used for testing

v

Performance averaged over 10 independent trials



Performance assessment of LETnetVar
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Figure: Comparison of ensemble-averaged reconstruction SNR and its standard deviation.

@ Observations
» LETnetVar with 100 layers performs 3 to 4 dB better than ISTA, with optimally
chosen hyper-parameter (A1).

» When measurements are more noisy, the improvement in recovery SNR of
LETnet was found to be higher.

» Training and validation errors reduce monotonically with training epochs

O ! =

PN Gs



What regularizers did the fLETnet learn?

J.d

di L L

[ G

Figure: The learnt LET functions (blue) of fLETnet and the corresponding induced
regularizers (red).

o Key observations

» Can learn a wide variety of regularizers
» Signal component missed in a layer can be recovered subsequently
» Balance between signal preservation and noise cancellation




A comparison of testing run-times

Algorithm per iteration/layer run-time | number of layers/ total time
(in milliseconds) iterations (in milliseconds)

ISTA 0.0331 1000 33.10
FISTA 0.0394 1000 39.40
LETnet 0.0895 100 8.95
fLE Tnet 0.1088 50 5.44

MMSE-ISTA 0.6184 1000 618.40

CoSaMP 11.7672 50 588.36

IRLS 5.2784 50 263.92




Deep dictionary learning

N
i e R™, learn an

N
j=

@ Problem statement: Given a set of signals {yj}

overcomplete dictionary A € R™" and s-sparse vectors {x,-}
such that y; ~ Ax;

1eR”,s<<n,

o Proposed approach:

N
A=min » [|A nety, (A) - yill,
j=1

> nety, (A) is the output of ISTA corresponding to the signal y; and dictionary A
> Gradient descent: A «— A —uVJ(A)
» Computing VJ(A) requires only matrix-vector products

@ Advantages over conventional dictionary learning algorithms:

» Online implementation

» Distributed implementation for a large training dataset

» Certain desirable properties on the dictionary, such as incoherence, can be
promoted by adding a penalty and appropriately modifying the gradient



Deep dictionary learning: Performance validation

o Data generation
» n=50,m=20
Number of examples N = 2000
Sparsity s = 3
Number of layers L = 200
Add noise to the training dataset such that SNRj,p,t = 30 dB
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Figure: Comparison of DNN-based dictionary learning with K-SVD



Summary and future works

Summary
@ Sparse coding as a function approximation problem
o Link between ISTA and a DNN
o Learning data-driven parameterized nonlinearities
o Efficient Hessian-free second-order optimization for training the network
@ Link between FISTA and deep residual network
@ The induced regularizers are nonstandard! Go beyond ¢; and ¢,
o Extension to dictionary learning
Future works

o Restricted to a fixed dictionary. How about adaptive/slowly varying

dictionaries?

o A generic DNN solution to any iterative algorithm for inverse problems?



