
Deep Sparse Coding and Dictionary Learning
Subhadip Mukherjee and Chandra Sekhar Seelamantula

Department of Electrical Engineering
Indian Institute of Science, Bangalore 560012, India
Email: {subhadip, chandra.sekhar}@ee.iisc.ernet.in

SPECTRUM LAB

! !SPECTRUM LAB

! !SPECTRUM LAB

! ! Spectrum Lab

1. Sparse Coding
IProblem statement: Given a signal y 2 Rm and an overcomplete

dictionary A 2 Rm⇥n, find an s-sparse vector x 2 Rn, s⌧ n, such that

y ⇡ Ax =) Basis selection: Express y =
X

i2S

xiai, |S| = s

ISolution: Seek the minimum `0-(quasi)-norm solution: NP-hard
min

x

kxk0 subject to y = Ax

2. Iterative Shrinkage-Thresholding Algorithm (ISTA)
IRelaxation techniques: Solve sparsity-regularized least-squares

x̂ = arg min
x

1
2
ky - Axk2

2
| {z }

f (x)

+ �R (x)| {z }
promotes sparsity

I ISTA update: x

t+1 = T�⌘
�
x

t - ⌘rf
�
x

t�� neural net.⌘ x

t+1 = t �
Wx

t + b

�
,

where W = I - ⌘A

>
A and b = ⌘A

>
y

IOur approach: Learning the activation t in a data-driven manner
IAdvantage-1: Number of parameters to learn does not grow with n
IAdvantage-2: Possible to learn a rich variety of activations and regularizers

3. Architecture and Training of LETnet

LETnet architecture: Model t(u) =
KX

k=1

ct
k�k(u), �k(u) = u exp

⇣
-(k-1)u2

2⌧2

⌘

IEEE T-PAMI v

x0
x1

�1
�(x̃1)

xt

�t
�(x̃t)

xL

�L
� (x̃L)W

b

x̃1

W

b

x̃2

W

b

x̃t+1

b

x̃t

b

x̃L

LAYER 1 LAYER t LAYER L

Fig. 2: (Color online) A schematic of the proposed LETnetVar with L layers. Nonlinear LET shrinkage operators �t
� are applied

pointwise on x̃t at layer-t. Typical examples of LET activation functions and the corresponding regularizers are shown in blue
and red, respectively, for each layer.

with W and b as defined in Section 2.1. The proximal
operator P g

� in (7) is replaced by the activation � applied
element-wise on x̃t+1. Each iteration in (13) can be viewed
as an affine operation followed by a nonlinear activation.
This perspective establishes a bridge between iterative al-
gorithms for sparse coding and feed-forward NN. Moti-
vated by the flexibility offered by LET-based activation and
efficient parametric control over the induced regularizers,
as elucidated in Section 3, we employ them as nonlinear
activation functions. In the sequel, we refer to a NN with
LET-based activation as LETnet. Unlike the classical feed-
forward NN, LETnet contains fixed weights and biases
determined by the sensing matrix A and the measurement
y at every layer, whereas the LET coefficients are optimized
during training, for which we propose efficient algorithms.
We consider two architectures: LETnetFixed, where the LET
parameters across all the layers are tied; and LETnetVar,
where the LET parameters are allowed to vary across lay-
ers. The numerical experiments indicate that the LETnetVar
results in better reconstruction compared with LETnetFixed,
owing to higher flexibility.

Recently, Kamilov et al. [28] proposed to employ a
parametric linear combination of cubic B-splines instead of
the soft-threshold, to parametrize the activation function,
which is optimized during training and kept fixed across
all layers. The resulting network is referred to as minimum
mean-squared error ISTA (MMSE-ISTA). We shall show that,
one of the advantages of using an LET-based activation
is that it takes remarkably less number of basis functions
(K ⇡ 5) to cover a fairly rich class of regularizers without
sacrificing the representational ability of the network. In
contrast, MMSE-ISTA requires K ⇡ 8000 cubic B-spline
bases. Therefore, the proposed NN model is less likely to
over-fit a fixed training set, as it uses less number of free
parameters.

The proposed LETnetVar architecture is illustrated in
Figure 2. The initial estimate x0 (typically an all-zero vector)
is passed through the layers of the LETnetVar to obtain an
estimate xL of the true sparse signal. Once the activation
function coefficients are optimized for a fixed sensing matrix
A, it is straightforward to predict x given a new noisy
and compressive measurement – it is simply a matter of
computing one forward pass through the network. While
the computational complexities of LETnetFixed/LETnetVar
per layer and ISTA per iteration are identical, the network
has far fewer layers than the number of iterations of ISTA,

Algorithm 1 The BACK-PROPAGATION algorithm for the
LETnetVar architecture
Input: A training pair (y,x), the sensing matrix A

1: Perform a forward pass through the LETnetVar to com-
pute xt and x̃t, t = 1 : L.

2: Initialize t L and rxtJ xL � x.
3: for t = L down to 1 do
4: rctJ =

�
�t��rxtJ , where �t

i,k = �k (x̃t
i)

5: rx̃tJ = diag
⇣
�

�(t) (xt)
⌘
rxtJ

6: rxt�1J = W�rx̃tJ

Output: The gradient vectors rctJ , for t = 1 : L

leading to an overall lower complexity. The reconstruction
accuracy is also superior in case of LETnetVar/LETnetFixed.

4.1 Training LETnetVar : Learning Optimal Shrinkage
For a given A, the training dataset D consists of N examples
{(yq,xq)}N

q=1, where yq = Axq + �q . The random noise
vectors �q are assumed to be independent and identically
distributed. Let ct 2 RK , t = 1 : L, be the coefficients
of the LET activation at layer t. For the qth example in the
dataset, the prediction xL

q of the Lth layer is a function of
the corresponding measurement vector yq and the set of
LET coefficient vectors c = {ct}L

t=1. For convenience, we
assume that c is vector of size KL, with the cts stacked on
top of each other. The optimal set of activation parameters
c� is obtained by minimizing the squared estimation error

J(c) =
1

2

N�

q=1

kxL
q (yq, c)� xqk22, (15)

over all training examples. The optimization requires
knowledge of the gradient of J(c) with respect to c, for
which we derive associated back-propagation algorithms
(cf. Algorithm 1 and Section 5.1 for LETnetVar, and supple-
mentary material for LETnetFixed). The optimization of J(c)
using vanilla GD tends to diverge, unless a very small step
size is chosen. The reason for divergence is the exploding
gradient [45], primarily caused by the unboundedness of
�1 in the LET expansion. We overcome this problem by
the Hessian-Free optimization (HFO) technique [37]. In the ith

epoch of HFO [37] (summarized in Algorithm 3), the search
direction ��

c is obtained by minimizing a locally quadratic

LETnet training:

ITraining cost J(c) =
1
2

NX

q=1

kxL
q
�
yq, c

�
- xqk2

2, where c =
�
c1; c2; · · · ; cL�

ISecond-order Hessian-free optimization
I J(q)i (ci + �c) = J (ci) + �>c gi +

1
2�
>
c Hi�c

ICompute optimal direction using conjugate-gradient (CG) at every epoch i

�⇤c = arg min
�c

J(q)i (ci + �c) + � k�ck2
2

IUpdate parameters as ci+1 ci + �⇤c

ITwo ingredients of CG
IGradient gi = rJ(c)|c=ci

and the Hessian-vector product Hiu, for any u
IComputing the hessian-vector product
I Ru(h(c)) = lim↵!0

h(c+↵u)-h(c)
↵ =) Hiu = Ru (rcJ(c))|c=ci

I gi and Hiu are computed using back-propagation

4. Validation on Synthetic Signals
IData generation:
I n = 256, m = d0.7ne
IAi,j ⇠ N(0, 1/m)
I

x = xsupp � xmag, where xsupp ⇠ Bernoulli(⇢) and xmag ⇠ N(0, 1)
I 0 < ⇢ < 1: smaller the value of ⇢, sparser the vector x

I � chosen optimally using cross-validation
I 100 examples used for training and testing
I Performance averaged over 10 independent trials

IReconstruction SNR and training error:

0.05 0.1 0.15 0.2 0.25
r

0

5

10

15

20

25

30

35

R
E

C
O

V
E

R
Y

SN
R

ISTA
FISTA
LETnetVar

MMSE-ISTA
CoSaMP
IRLS

0 10 20 30 40 50 60
TRAINING EPOCHS

0.2

0.4

0.6

0.8

1.0

1.2

E
R

R
O

R

Training
Validation

(a) SNRinput = 20 dB (b) Training and validation error
IBoth training and validation errors decrease; no overfitting

Acknowledgement: This is a joint work with Debabrata Mahapatra.

5. fLETnet: A Deep Architecture Motivated by FISTA
IFISTA iterations unfolded
1. zt = (1 + �t)xt-1 - �txt-2

2. xt = T⌫
�
x̃t�, where x̃t = Wzt + b for t = 1, 2, · · · , L

I
fLETnet architecture:

IEEE T-PAMI ix

(a) SNRinput = 10 dB (b) SNRinput = 15 dB (c) SNRinput = 20 dB

(d) SNRinput = 25 dB (e) SNRinput = 30 dB (f) Training and validation error

Fig. 3: (Color online) The variation of the (ensemble averaged) reconstruction SNR for different algorithms as a function of the
sparsity parameter �, corresponding to different measurement/input SNRs.

W �1
�

�
x̃1

�
�2

�

�
x̃2

�
�L

�

�
x̃L

�
�L�1

�

�
x̃L�1

�
1+�1

��2

1+�2 1+�3

��3 ��L

1+�L

z1 z2 z3 zLx1 x2 xL

x0

b

x̃1

W
x̃2

W
x̃L

b b

LAYER 1 LAYER 2 LAYER L � 1 LAYER L

Fig. 4: Architecture of fLETnetVar. Every layer (except the first layer) is connected to two of its previous layers. The activation
functions are untied across layers.

6.2 Training Details of LETnetVar and MMSE-ISTA

For a fixed sensing matrix A, a training dataset consisting
of N = 100 examples is generated for learning the optimal
nonlinearities of LETnetVar and MMSE-ISTA. A validation
set containing 20 examples is used during training in order
to avoid over-fitting. The trained network is tested on a
dataset containing Ntest = 100 examples drawn according
to the same statistical model that was used to generate the
training dataset (cf. Section 6.1). The procedure is repeated
T = 10 times with different datasets, corresponding to
10 different sensing matrices, to measure the ensemble-
averaged performance of LETnetVar and MMSE-ISTA. The
optimal regularization parameter � for ISTA is chosen as
explained in Section 6.1 and the same value is used in
MMSE-ISTA, as suggested in [28]. The parameter �opt used
in training LETnetVar is chosen by cross-validation over five
values of � placed logarithmically in the interval [0.05, 0.5].
Both networks contain L = 100 layers.

For the MMSE-ISTA architecture, K = 501 coefficients

are used to parametrize the activation function using cubic
B-splines, and the same set of coefficients are shared across
all the layers. The MMSE-ISTA network is trained using GD
with a step-size of � = 10�4, as suggested in [28], and the
algorithm is terminated when the number of training epochs
exceeds 1000.

The LET-based activation function in LETnetVar is
parametrized with K = 5 coefficients in every layer, leading
to a total of 500 parameters, which is comparable to the
number of free parameters in MMSE-ISTA. The HFO algo-
rithm for training LETnetVar is terminated after 60 epochs.

6.2.1 Initialization and termination criteria for CG
The CG algorithm required to compute the optimal direction
��
c in every epoch of HFO is initialized with that obtained

in the previous epoch of HFO. Theoretically, it takes KL
iterations for the CG algorithm to compute an exact solution
to (17), since the variable c is of dimension KL. Martens et
al. [37] reported that it suffices to run the CG algorithm
in each HFO iteration only a few times according to a

IKey Features of fLETnet:
IDirect links from two previous layers (second-order memory)
ICircumvents the issue of vanishing/exploding gradient
I The resulting architecture fLETnet is essentially a deep residual network
I Equivalent performance as the LETnet with half as many layers

IWhat regularizers does the fLETnet learn?IEEE T-PAMI xii

8 9 10 11 12 13 14

Fig. 6: The learnt parametric LET functions (blue) of fLETnet over a typical dataset and their corresponding induced
regularizers (red). The activation functions and the regularizers are compared with ST and the �1 penalty (black),
respectively. Zoomed-in portions of the estimated signals at the layers are also shown for visual comparison.

less computation time overall. The MMSE-ISTA algorithm
requires relatively more time than the proposed architec-
tures, mainly because it uses significantly more parameters
to model the activation function. The run-times for IRLS and
CoSaMP are considerably higher, as they require to compute
matrix inversion and pseudo-inverse, respectively, within
every iteration.

7.3 What Regularizers Does the fLETnet Learn?
To gain insights into the functioning of fLETnet, it is instruc-
tive to study the activation functions and the corresponding
regularizers in each layer at the end of training. In Figure 6,
we show an illustration of the typical learnt activations and
the regularizers over each layer from 8 to 14 of a trained
fLETnet. A segment of the corresponding output signals are
also shown. The activation functions in all 50 layers are
provided in the supplementary document. Take for instance,
layer 8, where the regularizer is closer to the �1 penalty
over the dynamic range of the input. On the other hand, the
induced regularizers in layers 9, 13, and 14 are between the
�1 and �2 penalties. Interestingly, the regularizers in layers
10, 11, and 12 decrease beyond a certain range of inputs
and even go negative, thereby encouraging an already large
input to increase further in magnitude. Such a behavior is
in stark contrast with the familiar �0/�1-norm-based regu-
larizers, which never amplify the input. This behavior of
the network seems to have a high impact on support re-
covery. To understand further, let us examine the LET-based
activation defined in (9), for |v| > v0, where v0 is a large
constant (for example, v0 = 3�). As the exponential terms
in the expression of � decay as |v| increases, we can write
�(v) ⇡ c1v for |v| > v0. As the coefficients are initialized
to approximate the ST operator, we have c1 < 1 prior to
training, because the ST output never exceeds its input in
magnitude. However, in the process of training, c1 might
get updated to a value larger than one, thereby resulting

in |�(v)| ⇡ c1 |v| > |v|, for |v| > v0. This is reflected
in the corresponding regularizer, as it slopes downwards
and even becomes negative for inputs of large magnitudes.
However, the induced regularizers across all layers offer
a positive penalty for small magnitudes resulting in noise
rejection. The network effects two simultaneous operations
– reduction of small amplitudes (noise), and enhancement
of large amplitudes, which are due to the signal. The signal
component that gets eliminated in one layer in the process
of canceling noise can again be recovered in a subsequent
layer due to the negative penalty as highlighted in the third
row of Figure 6. Therefore, the regularizers learnt by fLETnet
cover a wide range between hard and soft thresholding, and
even go beyond these, leading to a balance between noise
rejection and signal preservation.

7.4 Support Recovery in fLETnet

In Figure 7, we plot the layer-wise reconstruction SNR,

defined as SNRt =
kxt�xk2

2

�x�2
2

on test signals, versus the
layer index t of a trained fLETnet. The input SNR and the
sparsity parameter � are taken as 20 dB and 0.2, respectively.
The variation of reconstruction SNR with respect to the
corresponding number of iterations of FISTA is also shown
to facilitate comparison. We observe that the recovery SNR
for FISTA increases initially and saturates as the number of
iterations exceeds 40, resulting in no further improvement
in estimation. However, the evolution of SNRt for a trained
fLETnet exhibits an overall increasing trend, in spite of the
local variations. The estimate produced by the final layer is
significantly better than the FISTA output, by almost 5.5 dB.

The SNRt has a steep increase for the first few layers (up
to 20), nearly the same behavior as that of FISTA. After that,
the SNRt seems to oscillate before reaching a value about
5.5 dB higher than FISTA. We conjecture that the network
actually stabilizes its support estimate in this regime. To

6. Comparison of Testing Run-times
Algorithm per iteration/layer run-time # layers/ total time

(in milliseconds) iterations (in milliseconds)
ISTA 0.0331 1000 33.10

FISTA 0.0394 1000 39.40
LETnet 0.0895 100 8.95
fLETnet 0.1088 50 5.44

MMSE-ISTA 0.6184 1000 618.40
CoSaMP 11.7672 50 588.36

IRLS 5.2784 50 263.92

7. Deep Dictionary Learning

IProblem statement: Given a set of signals
⌦

yj

↵N

j=1
2 Rm, learn an

overcomplete dictionary A 2 Rm⇥n and s-sparse vectors
�

xj
 N

j=1 2 R
n,

s⌧ n, such that yj ⇡ Axj for all j

IProposed approach: Â = min
A

PN
j=1

���A net
yj
(A)- yj

���
2

2
I net

yj
(A) is the output of ISTA corresponding to the signal yj and dictionary A

IGradient descent: A A - µrJ(A), rJ(A) requires only matrix-vector products
IAdvantages over conventional dictionary learning algorithms:
IOnline and distributed implementations
ICertain desirable properties on the dictionary, such as incoherence, can be promoted

by adding a penalty and appropriately modifying the gradient
IPerformance metrics:
IAtom detection rate: #{recovered atoms}

n

IDistance of Â from A

⇤:  = 1
n

nX

i=1

min
16j6n

⇣
1 -

���aT
j a

⇤
i

���
⌘

IExperimental validation:
I n = 50, m = 20, sparsity s = 3, # examples N = 2000, SNRinput = 30 dB
I # layers L = 200, # training epochs Nepoch = 80

10 20 30 40 50 60 70 80

TRAINING EPOCHS

0

0.2

0.4

0.6

0.8

1

A
T

O
M

 D
E

T
E

C
T

IO
N

 R
A

T
E

DNN

KSVD

10 20 30 40 50 60 70 80

TRAINING EPOCHS

0

0.05

0.1

0.15

0.2

0.25

D
IS

T
A

N
C

E
 F

R
O

M
 G

R
O

U
N

D
-T

R
U

T
H

DNN

KSVD

Deep Sparse Coding and Dictionary Learning

Subhadip Mukherjee and Chandra Sekhar Seelamantula
Joint work with Debabrata Mahapatra

Department of Electrical Engineering
Indian Institute of Science
Bangalore – 560012, India

Email: {subhadip, chandra.sekhar}@ee.iisc.ernet.in

April 7, 2017
EECS Divisional Symposium, 2017

Outline

What is sparse coding?

Iterative shrinkage-thresholding algorithms (ISTA)

I Iterative unfolding and connections to deep neural networks (DNNs)

I Building a learnable model for sparse coding

Our contributions

I Modeling the non-linearity using a linear expansion of thresholds (LETs)

I Parametric flexibility for designing regularizers

I Efficient second-order (Hessian-free) optimization for learning

I Reducing the number of layers and link with deep residual networks

I Building a deep architecture for dictionary learning

Simulation results and insights

Summary and future works

What is sparse coding?

Problem statement: Given a signal y 2 Rm and an overcomplete dictionary
A 2 Rm⇥n, find an s-sparse vector x 2 Rn, s ⌧ n, such that y = Ax

Basis selection: Express y =
X

i2S
x

i

a

i

, |S | = s

I Estimating A from given data is the problem of dictionary learning

Solution: Seek the minimum `0-(quasi)-norm solution: Combinatorially hard

min
x

kxk0 subject to y = Ax

Iterative shrinkage-thresholding algorithm (ISTA) meets neural network

Relaxation techniques: Solve sparsity-regularized least-squares

x̂ = arg min
x

1
2
ky � Axk22
| {z }

f(x)

+ �R (x)
| {z }

promotes sparsity

ISTA update rule (Daubechies et al., 2004)
I

x

t+1 = T�⌘

⇣

x

t � ⌘rf

⇣

x

t

⌘⌘

, where T⌫ denotes soft-thresholding with threshold ⌫

Unfolding of ISTA iterations

x

t+1 = t

|{z}

non lin.

0

B

B

B

B

B

B

B

@

Wx

t + b

| {z }

affine

1

C

C

C

C

C

C

C

A

, where W = I � ⌘A

>
A and b = ⌘A

>
y

Building learnable models
I Learn the linear transformation parameters W and b from the data –

data-intensive
I Learn the nonlinear shrinkage function

LETnet : Modeling the activation nonlinearity using LETs

I LET modeling: t (u) =
K

X

k=1

c

t

k

�
k

(u), where �
k

(u) = u exp
✓

� (k�1)u2

2⌧2

◆

Unfolding of FISTA (Nesterov, 1980s) and the fLETnet

FISTA iterations unfolded
1 zt = (1 + �

t

)xt�1 � �
t

xt�2

2 x̃t = Wzt + b
3 xt = T⌫

⇣

x̃t

⌘

, for t = 1, 2, · · · , L

IEEE T-PAMI ix

(a) SNRinput = 10 dB (b) SNRinput = 15 dB (c) SNRinput = 20 dB

(d) SNRinput = 25 dB (e) SNRinput = 30 dB (f) Training and validation error

Fig. 3: (Color online) The variation of the (ensemble averaged) reconstruction SNR for different algorithms as a function of the
sparsity parameter �, corresponding to different measurement/input SNRs.

W �1
�

�
x̃1

�
�2

�

�
x̃2

�
�L

�

�
x̃L

�
�L�1

�

�
x̃L�1

�
1+�1

��2

1+�2 1+�3

��3 ��L

1+�L

z1 z2 z3 zLx1 x2 xL

x0

b

x̃1

W
x̃2

W
x̃L

b b

LAYER 1 LAYER 2 LAYER L � 1 LAYER L

Fig. 4: Architecture of fLETnetVar. Every layer (except the first layer) is connected to two of its previous layers. The activation
functions are untied across layers.

6.2 Training Details of LETnetVar and MMSE-ISTA

For a fixed sensing matrix A, a training dataset consisting
of N = 100 examples is generated for learning the optimal
nonlinearities of LETnetVar and MMSE-ISTA. A validation
set containing 20 examples is used during training in order
to avoid over-fitting. The trained network is tested on a
dataset containing Ntest = 100 examples drawn according
to the same statistical model that was used to generate the
training dataset (cf. Section 6.1). The procedure is repeated
T = 10 times with different datasets, corresponding to
10 different sensing matrices, to measure the ensemble-
averaged performance of LETnetVar and MMSE-ISTA. The
optimal regularization parameter � for ISTA is chosen as
explained in Section 6.1 and the same value is used in
MMSE-ISTA, as suggested in [28]. The parameter �opt used
in training LETnetVar is chosen by cross-validation over five
values of � placed logarithmically in the interval [0.05, 0.5].
Both networks contain L = 100 layers.

For the MMSE-ISTA architecture, K = 501 coefficients

are used to parametrize the activation function using cubic
B-splines, and the same set of coefficients are shared across
all the layers. The MMSE-ISTA network is trained using GD
with a step-size of � = 10�4, as suggested in [28], and the
algorithm is terminated when the number of training epochs
exceeds 1000.

The LET-based activation function in LETnetVar is
parametrized with K = 5 coefficients in every layer, leading
to a total of 500 parameters, which is comparable to the
number of free parameters in MMSE-ISTA. The HFO algo-
rithm for training LETnetVar is terminated after 60 epochs.

6.2.1 Initialization and termination criteria for CG
The CG algorithm required to compute the optimal direction
��
c in every epoch of HFO is initialized with that obtained

in the previous epoch of HFO. Theoretically, it takes KL
iterations for the CG algorithm to compute an exact solution
to (17), since the variable c is of dimension KL. Martens et
al. [37] reported that it suffices to run the CG algorithm
in each HFO iteration only a few times according to a

fLETnet : Network architecture motivated by FISTA
I Replace T⌫ with a parametric activation t

I Direct links from two previous layers (second-order memory)
I -1 link: identity mapping; thus no new parameters to learn
I Circumvents the issue of vanishing/exploding gradient
I The fLETnet architecture is essentially a deep residual network (He et al., 2015)
I Results in equivalent performance as the LETnet with half as many layers

Training the LETnet and the fLETnet

Training dataset D consists of N examples {(y
q

, x
q

)}N
q=1, where

y
q

= Ax
q

+ ⇠
q

, for a given A

Training cost J(c) =
1
2

N

X

q=1

kxL

q

⇣

y

q

, c
⌘

� x
q

k22, where c =
⇣

c

1; c2; · · · ; cL

⌘

Second-order optimization
I Quadratic approximation in the i

th training epoch

J

(q)
i

(c
i

+ �
c

) = J (c
i

) + �>
c

g

i

+
1
2
�>

c

H
i

�
c

I Compute optimal direction using conjugate-gradient (CG) at every epoch i

�⇤
c

= arg min
�

c

J

(q)
i

(c
i

+ �
c

) + � k�
c

k22

I Update parameters as c

i+1 c

i

+ �⇤
c

Two ingredients of CG
I Gradient g

i

= rJ(c)
�

�

�

c=c

i

I Hessian-vector product H
i

u for any vector u, where H
i

= r2
J(c)
�

�

�

c=c

i

Ru(h(c)) = lim↵!0
h(c+↵u)�h(c)

↵ =) H
i

u = Ru (rcJ(c))
�

�

�

c=c
i

Experimental details and parameter settings

Data generation

I
n = 256, m = d0.7ne

I
A

i,j ⇠ N(0, 1/m)

I
x = xsupp � xmag, where xsupp ⇠ Bernoulli(⇢) and xmag ⇠ N(0, 1)

I 0 < ⇢ < 1: smaller the value of ⇢, sparser the vector x

I � chosen optimally using cross-validation

I
Ntrain = 100 examples used for training

I
Ntest = 100 examples used for testing

I Performance averaged over 10 independent trials

Performance assessment of LETnetVar

0.05 0.1 0.15 0.2 0.25
r

0

5

10

15

20

25

30

35

R
E

C
O

V
E

R
Y

SN
R

ISTA
FISTA
LETnetVar

MMSE-ISTA
CoSaMP
IRLS

0 10 20 30 40 50 60
TRAINING EPOCHS

0.2

0.4

0.6

0.8

1.0

1.2

E
R

R
O

R

Training
Validation

(a) SNR

input

= 20 dB (b) Training and validation error

Figure: Comparison of ensemble-averaged reconstruction SNR and its standard deviation.

Observations
I

LETnetVar with 100 layers performs 3 to 4 dB better than ISTA, with optimally
chosen hyper-parameter (�).

I When measurements are more noisy, the improvement in recovery SNR of
LETnet was found to be higher.

I Training and validation errors reduce monotonically with training epochs

What regularizers did the fLETnet learn?

IEEE T-PAMI xii

8 9 10 11 12 13 14

Fig. 6: The learnt parametric LET functions (blue) of fLETnet over a typical dataset and their corresponding induced
regularizers (red). The activation functions and the regularizers are compared with ST and the �1 penalty (black),
respectively. Zoomed-in portions of the estimated signals at the layers are also shown for visual comparison.

less computation time overall. The MMSE-ISTA algorithm
requires relatively more time than the proposed architec-
tures, mainly because it uses significantly more parameters
to model the activation function. The run-times for IRLS and
CoSaMP are considerably higher, as they require to compute
matrix inversion and pseudo-inverse, respectively, within
every iteration.

7.3 What Regularizers Does the fLETnet Learn?
To gain insights into the functioning of fLETnet, it is instruc-
tive to study the activation functions and the corresponding
regularizers in each layer at the end of training. In Figure 6,
we show an illustration of the typical learnt activations and
the regularizers over each layer from 8 to 14 of a trained
fLETnet. A segment of the corresponding output signals are
also shown. The activation functions in all 50 layers are
provided in the supplementary document. Take for instance,
layer 8, where the regularizer is closer to the �1 penalty
over the dynamic range of the input. On the other hand, the
induced regularizers in layers 9, 13, and 14 are between the
�1 and �2 penalties. Interestingly, the regularizers in layers
10, 11, and 12 decrease beyond a certain range of inputs
and even go negative, thereby encouraging an already large
input to increase further in magnitude. Such a behavior is
in stark contrast with the familiar �0/�1-norm-based regu-
larizers, which never amplify the input. This behavior of
the network seems to have a high impact on support re-
covery. To understand further, let us examine the LET-based
activation defined in (9), for |v| > v0, where v0 is a large
constant (for example, v0 = 3�). As the exponential terms
in the expression of � decay as |v| increases, we can write
�(v) � c1v for |v| > v0. As the coefficients are initialized
to approximate the ST operator, we have c1 < 1 prior to
training, because the ST output never exceeds its input in
magnitude. However, in the process of training, c1 might
get updated to a value larger than one, thereby resulting

in |�(v)| � c1 |v| > |v|, for |v| > v0. This is reflected
in the corresponding regularizer, as it slopes downwards
and even becomes negative for inputs of large magnitudes.
However, the induced regularizers across all layers offer
a positive penalty for small magnitudes resulting in noise
rejection. The network effects two simultaneous operations
– reduction of small amplitudes (noise), and enhancement
of large amplitudes, which are due to the signal. The signal
component that gets eliminated in one layer in the process
of canceling noise can again be recovered in a subsequent
layer due to the negative penalty as highlighted in the third
row of Figure 6. Therefore, the regularizers learnt by fLETnet
cover a wide range between hard and soft thresholding, and
even go beyond these, leading to a balance between noise
rejection and signal preservation.

7.4 Support Recovery in fLETnet

In Figure 7, we plot the layer-wise reconstruction SNR,

defined as SNRt =
�xt�x�2

2

�x�2
2

on test signals, versus the
layer index t of a trained fLETnet. The input SNR and the
sparsity parameter � are taken as 20 dB and 0.2, respectively.
The variation of reconstruction SNR with respect to the
corresponding number of iterations of FISTA is also shown
to facilitate comparison. We observe that the recovery SNR
for FISTA increases initially and saturates as the number of
iterations exceeds 40, resulting in no further improvement
in estimation. However, the evolution of SNRt for a trained
fLETnet exhibits an overall increasing trend, in spite of the
local variations. The estimate produced by the final layer is
significantly better than the FISTA output, by almost 5.5 dB.

The SNRt has a steep increase for the first few layers (up
to 20), nearly the same behavior as that of FISTA. After that,
the SNRt seems to oscillate before reaching a value about
5.5 dB higher than FISTA. We conjecture that the network
actually stabilizes its support estimate in this regime. To

Figure: The learnt LET functions (blue) of fLETnet and the corresponding induced
regularizers (red).

Key observations
I Can learn a wide variety of regularizers
I Signal component missed in a layer can be recovered subsequently
I Balance between signal preservation and noise cancellation

A comparison of testing run-times

Algorithm per iteration/layer run-time number of layers/ total time
(in milliseconds) iterations (in milliseconds)

ISTA 0.0331 1000 33.10
FISTA 0.0394 1000 39.40

LETnet 0.0895 100 8.95
fLETnet 0.1088 50 5.44

MMSE-ISTA 0.6184 1000 618.40
CoSaMP 11.7672 50 588.36

IRLS 5.2784 50 263.92

Deep dictionary learning

Problem statement: Given a set of signals
n

y

j

o

N

j=1
2 Rm, learn an

overcomplete dictionary A 2 Rm⇥n and s-sparse vectors
n

x

j

o

N

j=1
2 Rn, s ⌧ n,

such that y

j

⇡ Ax

j

Proposed approach:

Â = min
A

N

X

j=1

�

�

�

A net
y

j

(
A

) � y

j

�

�

�

2

2

I net
y

j

(A) is the output of ISTA corresponding to the signal y

j

and dictionary A

I Gradient descent: A A � µrJ(A)
I Computing rJ(A) requires only matrix-vector products

Advantages over conventional dictionary learning algorithms:
I Online implementation
I Distributed implementation for a large training dataset
I Certain desirable properties on the dictionary, such as incoherence, can be

promoted by adding a penalty and appropriately modifying the gradient

Deep dictionary learning: Performance validation

Data generation
I

n = 50, m = 20
I Number of examples N = 2000
I Sparsity s = 3
I Number of layers L = 200
I Add noise to the training dataset such that SNRinput = 30 dB

10 20 30 40 50 60 70 80

TRAINING EPOCHS

0

0.2

0.4

0.6

0.8

1

A
T

O
M

 D
E

T
E

C
T

IO
N

 R
A

T
E

DNN

KSVD

10 20 30 40 50 60 70 80

TRAINING EPOCHS

0

0.05

0.1

0.15

0.2

0.25

D
IS

T
A

N
C

E
 F

R
O

M
 G

R
O

U
N

D
-T

R
U

T
H

DNN

KSVD

Figure: Comparison of DNN-based dictionary learning with K-SVD

Summary and future works

Summary

Sparse coding as a function approximation problem

Link between ISTA and a DNN

Learning data-driven parameterized nonlinearities

Efficient Hessian-free second-order optimization for training the network

Link between FISTA and deep residual network

The induced regularizers are nonstandard! Go beyond `1 and `0

Extension to dictionary learning

Future works

Restricted to a fixed dictionary. How about adaptive/slowly varying

dictionaries?

A generic DNN solution to any iterative algorithm for inverse problems?

