

Deep Sparse Coding and Dictionary Learning

Subhadip Mukherjee and Chandra Sekhar Seelamantula Department of Electrical Engineering Indian Institute of Science, Bangalore 560012, India Email: {subhadip, chandra.sekhar}@ee.iisc.ernet.in

LAYER I

5. fLETnet: A Deep Architecture Motivated by FISTA

LAYER L

Key Features of *fLETnet*: Direct links from two previous layers (second-order memory)

- · Circumvents the issue of vanishing/exploding gradient
- The resulting architecture *fLETnet* is essentially a deep residual network
- Equivalent performance as the LETnet with half as many layers

What regularizers does the *fLETnet* learn?

6. Comparison of Testing Run-times

Algorithm	per iteration/layer run-time	# layers/	total time
_	(in milliseconds)	iterations	(in milliseconds)
ISTA	0.0331	1000	33.10
FISTA	0.0394	1000	39.40
LETnet	0.0895	100	8.95
fLETnet	0.1088	50	5.44
MMSE-ISTA	0.6184	1000	618.40
CoSaMP	11.7672	50	588.36
IRLS	5.2784	50	263.92

7. Deep Dictionary Learning

• **Problem statement**: Given a set of signals $\left\{ \boldsymbol{y}_{j} \right\}_{j=1}^{N} \in \mathbb{R}^{m}$, learn an

overcomplete dictionary $\mathbf{A} \in \mathbb{R}^{m \times n}$ and *s*-sparse vectors $\{\mathbf{x}_j\}_{i=1}^N \in \mathbb{R}^n$, $s \ll n$, such that $y_i \approx Ax_i$ for all j

- Proposed approach: $\hat{A} = \min_{A} \sum_{j=1}^{N} \left\| A \operatorname{net}_{y_j}(A) - y_j \right\|_2^2$

- $\operatorname{net}_{u}(A)$ is the output of ISTA corresponding to the signal y_i and dictionary A
- Gradient descent: $A \leftarrow A \mu \nabla J(A)$, $\nabla J(A)$ requires only matrix-vector products
- Advantages over conventional dictionary learning algorithms:
- Online and distributed implementations
- · Certain desirable properties on the dictionary, such as incoherence, can be promoted by adding a penalty and appropriately modifying the gradient

• Distance of
$$\hat{A}$$
 from A^* : $\kappa = \frac{1}{n} \sum_{i=1}^{n} \min_{1 \le i \le n} \left(1 - \left| a_i^T a_i^* \right| \right)$

Experimental validation:

+
$$n = 50$$
, $m = 20$, sparsity $s = 3$, # examples $N = 2000$, SNR_{input} = 30 dE
+ # layers $L = 200$, # training epochs $N_{epoch} = 80$

Acknowledgement: This is a joint work with Debabrata Mahapatra.

Both training and validation errors decrease; no overfitting

Deep Sparse Coding and Dictionary Learning

Subhadip Mukherjee and Chandra Sekhar Seelamantula Joint work with Debabrata Mahapatra

> Department of Electrical Engineering Indian Institute of Science Bangalore – 560012, India

Email: {subhadip, chandra.sekhar}@ee.iisc.ernet.in

April 7, 2017 EECS Divisional Symposium, 2017

< ロ > < 団 > < 트 > < 트 > < 三 < つ < ()

Outline

- What is sparse coding?
- Iterative shrinkage-thresholding algorithms (ISTA)
 - Iterative unfolding and connections to deep neural networks (DNNs)
 - Building a learnable model for sparse coding
- Our contributions
 - Modeling the non-linearity using a linear expansion of thresholds (LETs)
 - Parametric flexibility for designing regularizers
 - Efficient second-order (Hessian-free) optimization for learning
 - Reducing the number of layers and link with deep residual networks
 - Building a deep architecture for dictionary learning
- Simulation results and insights
- Summary and future works

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What is sparse coding?

• Problem statement: Given a signal $\mathbf{y} \in \mathbb{R}^m$ and an overcomplete dictionary $\mathbf{A} \in \mathbb{R}^{m \times n}$, find an *s*-sparse vector $\mathbf{x} \in \mathbb{R}^n$, $s \ll n$, such that $\mathbf{y} = \mathbf{A}\mathbf{x}$

• Basis selection: Express $\boldsymbol{y} = \sum_{i \in S} x_i \boldsymbol{a}_i, |S| = s$

Estimating A from given data is the problem of dictionary learning

• Solution: Seek the minimum ℓ_0 -(quasi)-norm solution: Combinatorially hard

 $\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_0 \text{ subject to } \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○</p>

Iterative shrinkage-thresholding algorithm (ISTA) meets neural network

• Relaxation techniques: Solve sparsity-regularized least-squares

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \underbrace{\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2}}_{f(\boldsymbol{x})} + \underbrace{\lambda \mathcal{R}(\boldsymbol{x})}_{\text{promotes sparsity}}$$

- ISTA update rule (Daubechies et al., 2004)
 - $\mathbf{x}^{t+1} = T_{\lambda\eta} (\mathbf{x}^t \eta \nabla f (\mathbf{x}^t))$, where T_{ν} denotes soft-thresholding with threshold ν
- Unfolding of ISTA iterations

$$\mathbf{x}^{t+1} = \underbrace{\psi^t}_{\text{non lin.}} \left(\underbrace{\mathbf{W} \mathbf{x}^t + \mathbf{b}}_{\text{affine}} \right), \text{ where } \mathbf{W} = \mathbf{I} - \eta \mathbf{A}^{\top} \mathbf{A} \text{ and } \mathbf{b} = \eta \mathbf{A}^{\top} \mathbf{y}$$

- Building learnable models
 - Learn the linear transformation parameters W and b from the data data-intensive
 - Learn the nonlinear shrinkage function
- LETnet: Modeling the activation nonlinearity using LETs

► LET modeling:
$$\psi^t(u) = \sum_{k=1}^{K} c_k^t \phi_k(u)$$
, where $\phi_k(u) = u \exp\left(-\frac{(k-1)u^2}{2\tau^2}\right)$

Unfolding of FISTA (Nesterov, 1980s) and the fLETnet

• FISTA iterations unfolded

1
$$\mathbf{z}^{t} = (1 + \beta_{t})\mathbf{x}^{t-1} - \beta_{t}\mathbf{x}^{t-2}$$

2 $\tilde{\mathbf{x}}^{t} = \mathbf{W}\mathbf{z}^{t} + \mathbf{b}$
3 $\mathbf{x}^{t} = T_{v}(\tilde{\mathbf{x}}^{t})$, for $t = 1, 2, \cdots, L$

• fLETnet: Network architecture motivated by FISTA

- Replace T_{ν} with a parametric activation ψ^{t}
- Direct links from two previous layers (second-order memory)
- -1 link: identity mapping; thus no new parameters to learn
- Circumvents the issue of vanishing/exploding gradient
- ► The *fLETnet* architecture is essentially a deep residual network (He et al., 2015)
- Results in equivalent performance as the LETnet with half as many layers

・・

Training the LETnet and the fLETnet

• Training dataset \mathcal{D} consists of N examples $\{(\mathbf{y}_q, \mathbf{x}_q)\}_{q=1}^N$, where $\mathbf{y}_q = \mathbf{A}\mathbf{x}_q + \boldsymbol{\xi}_q$, for a given \mathbf{A}

• Training cost
$$J(\boldsymbol{c}) = \frac{1}{2} \sum_{q=1}^{N} \|\mathbf{x}_{q}^{L}(\mathbf{y}_{q}, \boldsymbol{c}) - \mathbf{x}_{q}\|_{2}^{2}$$
, where $\boldsymbol{c} = (\boldsymbol{c}^{1}; \boldsymbol{c}^{2}; \cdots; \boldsymbol{c}^{L})$

- Second-order optimization
 - Quadratic approximation in the *i*th training epoch

$$J_{i}^{\left(q\right)}\left(\boldsymbol{c}_{i}+\delta_{\boldsymbol{c}}\right)=J\left(\boldsymbol{c}_{i}\right)+\delta_{\boldsymbol{c}}^{\top}\boldsymbol{g}_{i}+\frac{1}{2}\delta_{\boldsymbol{c}}^{\top}\boldsymbol{\mathsf{H}}_{i}\delta_{\boldsymbol{c}}$$

Compute optimal direction using conjugate-gradient (CG) at every epoch i

$$\delta_{\boldsymbol{c}}^{*} = \arg\min_{\delta_{\boldsymbol{c}}} J_{i}^{(q)} \left(\boldsymbol{c}_{i} + \delta_{\boldsymbol{c}} \right) + \gamma \|\delta_{\boldsymbol{c}}\|_{2}^{2}$$

- Update parameters as $\boldsymbol{c}_{i+1} \leftarrow \boldsymbol{c}_i + \delta^*_{\boldsymbol{c}}$
- Two ingredients of CG
 - Gradient $\boldsymbol{g}_i = \nabla J(\boldsymbol{c}) \big|_{\boldsymbol{c} = \boldsymbol{c}_i}$
 - Hessian-vector product $\mathbf{H}_i \mathbf{u}$ for any vector \mathbf{u} , where $\mathbf{H}_i = \nabla^2 J(\mathbf{c}) |_{\mathbf{c}=\mathbf{c}_i}$

•
$$\mathcal{R}_{\mathbf{u}}(\mathbf{h}(\mathbf{c})) = \lim_{\alpha \to 0} \frac{\mathbf{h}(\mathbf{c} + \alpha \mathbf{u}) - \mathbf{h}(\mathbf{c})}{\alpha} \implies \mathbf{H}_{i}\mathbf{u} = \mathcal{R}_{\mathbf{u}} \left(\nabla_{\mathbf{c}} J(\mathbf{c}) \right) \Big|_{\mathbf{c} = \mathbf{c}_{i}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Experimental details and parameter settings

- Data generation
 - ▶ *n* = 256, *m* = [0.7*n*]
 - $A_{i,j} \sim \mathcal{N}(0, 1/m)$
 - $\mathbf{x} = \mathbf{x}_{supp} \odot \mathbf{x}_{mag}$, where $\mathbf{x}_{supp} \sim Bernoulli(\rho)$ and $\mathbf{x}_{mag} \sim \mathcal{N}(0, 1)$
 - ▶ 0 < ρ < 1: smaller the value of ρ, sparser the vector x</p>
 - λ chosen optimally using cross-validation
 - $N_{\text{train}} = 100$ examples used for training
 - $N_{\text{test}} = 100$ examples used for testing
 - Performance averaged over 10 independent trials

・ロット 4回ット 4回ットロックへの

Performance assessment of LETnetVar

Figure: Comparison of ensemble-averaged reconstruction SNR and its standard deviation.

Observations

- LETnetVar with 100 layers performs 3 to 4 dB better than ISTA, with optimally chosen hyper-parameter (λ).
- When measurements are more noisy, the improvement in recovery SNR of LETnet was found to be higher.
- Training and validation errors reduce monotonically with training epochs

・ロット 中国 ・ 山田 ・ 山田 ・ 山口 ・

What regularizers did the fLETnet learn?

Figure: The learnt LET functions (blue) of *fLETnet* and the corresponding induced regularizers (red).

• Key observations

- Can learn a wide variety of regularizers
- Signal component missed in a layer can be recovered subsequently
- Balance between signal preservation and noise cancellation

・ロット 4回ット ボット ボット しゃ

A comparison of testing run-times

Algorithm	per iteration/layer run-time	number of layers/	total time
	(in milliseconds)	iterations	(in milliseconds)
ISTA	0.0331	1000	33.10
FISTA	0.0394	1000	39.40
LETnet	0.0895	100	8.95
fLETnet	0.1088	50	5.44
MMSE-ISTA	0.6184	1000	618.40
CoSaMP	11.7672	50	588.36
IRLS	5.2784	50	263.92

ロ > < 団 > < 三 > < 三 > < 三 > < ○<(?)

Deep dictionary learning

- Problem statement: Given a set of signals {y_j}^N_{j=1} ∈ ℝ^m, learn an overcomplete dictionary A ∈ ℝ^{m×n} and s-sparse vectors {x_j}^N_{j=1} ∈ ℝⁿ, s ≪ n, such that y_j ≈ Ax_j
- Proposed approach:

$$\hat{\boldsymbol{A}} = \min_{\boldsymbol{A}} \sum_{j=1}^{N} \|\boldsymbol{A} \operatorname{net}_{\boldsymbol{y}_{j}}(\boldsymbol{A}) - \boldsymbol{y}_{j}\|_{2}^{2}$$

- $net_{y_i}(A)$ is the output of ISTA corresponding to the signal y_j and dictionary A
- Gradient descent: $\mathbf{A} \leftarrow \mathbf{A} \mu \nabla J(\mathbf{A})$
- Computing $\nabla J(\mathbf{A})$ requires only matrix-vector products
- Advantages over conventional dictionary learning algorithms:
 - Online implementation
 - Distributed implementation for a large training dataset
 - Certain desirable properties on the dictionary, such as incoherence, can be promoted by adding a penalty and appropriately modifying the gradient

・・

Deep dictionary learning: Performance validation

- Data generation
 - ▶ *n* = 50, *m* = 20
 - Number of examples N = 2000
 - Sparsity s = 3
 - ▶ Number of layers *L* = 200
 - Add noise to the training dataset such that SNR_{input} = 30 dB

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary and future works

Summary

- Sparse coding as a function approximation problem
- Link between ISTA and a DNN
- Learning data-driven parameterized nonlinearities
- Efficient Hessian-free second-order optimization for training the network
- Link between FISTA and deep residual network
- The induced regularizers are nonstandard! Go beyond ℓ_1 and ℓ_0
- Extension to dictionary learning

Future works

- Restricted to a fixed dictionary. How about adaptive/slowly varying dictionaries?
- A generic DNN solution to any iterative algorithm for inverse problems?

ロ > < 日 > < 三 > < 三 > < 三 > < ○<