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Spatio-temporal metric and the Simulation results with test sequence-2
» Understand and model the memory formation using learning rule
Turing’s reaction-diffusion equations. = Expansion of Voronoi region. Observe the Voronoi
= Explain the recall /anticipation process. - Spatio-temporal metric is given by regions 9 — 3 — 3 — 3.

= Reconstruction of missing samples using Turing’s
reaction-diffusion equations.
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Simulation experiments and results

Figure 18: 9 expands.

Goal: Illustrate the working of our algorithm by
demonstrating the spatio-temporal structure in the input
data embedded within the activations of the neurons.
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Figure 3: Reconstruction. Figure 4: Architecture.
« Absence of Grasshoppers: No pattern. * x
» Slow Grasshoppers: No pattern. Input daf  Voronoi region during testing Figure 20: 3 expands. Figure 21: 3 expands.
» Fire «+— Grasshoppers: reaction part. Figure 7: Illustration of anticipation capability of our algorithm.
« Hopping of Grasshoppers: diffusion part. Tooist; s d .
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Figure 12: Test seq. 1. Figure 13: Test seq. 2. Figure 24: No noise. Figure 25: With noise.

= STSOM performs better under noiseless and noisy
conditions compared to the SOMTAD, GASTAD, and

the STMPF algorithms.

« A glitch in the beginning of the STSOM performance
curve: every neuron has the same probability of winning
the competition for an input data in the beginning.

Simulation results with test sequence-1

» Expansion of Voronoi region. Observe the Voronoi
regions 9 — 2 — 2 — 1.
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@ Solved problems.
@ From cheetah spots to spatio-temporal memories.
@ Architecture and analysis.

@ Simulation setup and results.
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Problems solved thus far

@ Understand and model the memory formation using Turing's
reaction-diffusion equations.

@ Explain the recall/anticipation process.

@ Reconstruction of missing samples using spatio-temporal
memory.
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Grasshopper

Uncharred region
Charred region

@ Absence of Grasshoppers:
No pattern.

@ Slow Grasshoppers: No

: A
pattern 94 _ (A B)+ DaV?A
@ Fire +— Grasshoppers: Oaé

reaction part. = G(A,B) + DgV?B
@ Hopping of Grasshoppers:

diffusion part.

J.D. Murray, “"Mathematical Biology Il," Springer-Verlag New York, vol. 2,
2003.
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Cheetah spots: simulated

Reconstructed cheetah spots using Turing's reaction-diffusion equations.
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Architecture

2D lattice

Top view of 2D lattice
Activity of neurons -

i Interaction of waves Diffusion of waves
7
4 Input space

Vs

@ Winner: based on spatio-temporal metric.
@ Winner: activator; losers: inhibitors.
@ Interconnected neurons: reaction part.

@ Propagation of electrical pulse: diffusion part.
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Competitive-cooperative model

Two dimensional lattice

Sampling of wave solution.

)

To ensure positivity of activity waves

N-1

Cia>2|Can| + Z |Cajl — Caa (1)
i

Cip = gl = G = T (2)

forallj=1,--- N —1.
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Spatio-temporal metric

@ Spatio-temporal metric is given by

8 = ([V-Wj|+1-q). (3)

Lemma (Distance metric)

d(\V,W;) = ( |V -W|+1- a,-) is a distance metric.

@ Potential function is given by

- 22 A2hP(V)dV*.

Lemma (Distance metric)

N
The potential function E = %ZlAjzhj is convex.
j:
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Learning rule

@ The learning rule is given by

Wi(n+1) = Wf(n)—n(n)ﬁ,

Theorem (Convergence)

Let E be a real valued continuous function which is at least twice
differentiable, i.e., E € C?> on Q. Then, E converges to E* < E(Q)

if(n) > % Let VE € RY be the gradient of E,

d(" € RY such that VETd(") < 0 with o € [p, 1] for some p > 0.
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Simulation experiments and results: Lorenz dynamical

system

@ Goal: lllustrate the working of our algorithm by demonstrating
the spatio-temporal structure in the input data embedded
within the activations of the neurons.

Input data Joronoi region after training

Input data Voronoi region during testing

[llustration of anticipation capability of our algorithm.
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Data generation

Training sequence
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Training sequence with all the
modes.
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ion A of the training sequence.
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Data generation

Training sequence (Point C)

Training sequence (Point D)
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Limit cycle
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Section C of the training sequence. Section D of the training sequence.
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Data generation

Test sequence Test sequence
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Test sequence 1. Test sequence 2.
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Dynamic Voronoi tessellations: test sequence 1

@ Observe: 9 —2 -2 — 1.

The expansion or the contraction of a Vloronoi region is local and
volume conserving.
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Dynamic Voronoi tessellations: test sequence 2

@ Observe: 9 —+3 — 3 — 3.
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Experiment 2: Logistic equation

I
Ty
! | \\\ \V\\Y\\j\q\‘\ \Y\j \\\N

0.5
100”0 V,(2)

Data generated from Logistic Data with correlated noise.
equation.

= 0.2n.(n—1)+0.2n.(n —2)
+ 0.2n.(n—3) +0.2n.(n — 4)
+ 0.3nc(n—5).

—2 ne(n)
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Performance comparison

Cluster distortion without noise Cluster distortion with noise
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@ STSOM: Spatio-temporal self-organizing maps.[1]

@ STMPF: Spatio-temporal map formation based on potential
function. 2]

@ SOMTAD: Self-organizing maps with temporal activity
diffusion.[3]

e GASTAD: Neural gas with temporal activity diffusion.[3]
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Thank you
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