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Problems solved thus far

• Understand and model the memory formation using
Turing’s reaction-diffusion equations.

• Explain the recall/anticipation process.
• Reconstruction of missing samples using Turing’s
reaction-diffusion equations.

Idea and the architecture

Charred region

Grasshopper

Uncharred region

Figure 1: Example.
Figure 2: Cheetah spots.

Figure 3: Reconstruction. Figure 4: Architecture.

• Absence of Grasshoppers: No pattern.
• Slow Grasshoppers: No pattern.
• Fire ←→ Grasshoppers: reaction part.
• Hopping of Grasshoppers: diffusion part.

Reaction-diffusion equation

• The general form reaction-diffusion equation is given by

∂A

∂t
= F (A,B) + DA∇2A

∂B

∂t
= G(A,B) + DB∇2B

•A, B are concentrations of the morphogens.
•G and H are, in general, non-linear functions of A and
B.

•DA and DB are the diffusion coefficients of A and B
respectively.

Competitive-Cooperative model

• Winner: based on spatio-temporal metric.
• Winner: activator; losers: inhibitors.
• Interconnected neurons: reaction part.
• Propagation of electrical pulse: diffusion part.

Figure 5: Competitive-cooperative model for neuronal interactions.

Sampling of wave solution

Figure 6: Sampling of wave solution.

• The wave solution is sampled at the positions W j to get
Pji.

Spatio-temporal metric and the
learning rule

• Spatio-temporal metric is given by

∆j =
( ∥∥∥V −W j

∥∥∥ + 1− αj
)
.

• Potential function is given by

E = 1
2

N∑
j=1

∫
Rd

∆2
jhjP

(
V
)
dV d

.

•E is convex.
•E is minimized using stochastic gradient descent
method.

Simulation experiments and results

• Goal: Illustrate the working of our algorithm by
demonstrating the spatio-temporal structure in the input
data embedded within the activations of the neurons.

Input data Voronoi region after training

Input data Voronoi region during testing

Figure 7: Illustration of anticipation capability of our algorithm.

Data Generation: Lorenz dynamical
system

Figure 8: Training seq. Figure 9: Section A.

Figure 10: Section C. Figure 11: Section D.

Figure 12: Test seq. 1. Figure 13: Test seq. 2.

Simulation results with test sequence-1

• Expansion of Voronoi region. Observe the Voronoi
regions 9→ 2→ 2→ 1.

Figure 14: 9 expands. Figure 15: 2 expands.

Figure 16: 2 expands. Figure 17: 1 expands.

Simulation results with test sequence-2

• Expansion of Voronoi region. Observe the Voronoi
regions 9→ 3→ 3→ 3.

Figure 18: 9 expands. Figure 19: 3 expands.

Figure 20: 3 expands. Figure 21: 3 expands.

Logistic equation and comparison
results

• Data is generated using Logistic equation given by
V n+1 = a(V n − V

2
n),

• Correlated noise sequence nc is generated as follows:

nc(n) = 0.2nc(n− 1) + 0.2nc(n− 2)
+ 0.2nc(n− 3) + 0.2nc(n− 4)
+ 0.3nc(n− 5).

Figure 22: Clean data. Figure 23: Noisy data.

Figure 24: No noise. Figure 25: With noise.

• STSOM performs better under noiseless and noisy
conditions compared to the SOMTAD, GASTAD, and
the STMPF algorithms.

• A glitch in the beginning of the STSOM performance
curve: every neuron has the same probability of winning
the competition for an input data in the beginning.
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Overview

Solved problems.

From cheetah spots to spatio-temporal memories.

Architecture and analysis.

Simulation setup and results.
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Problems solved thus far

Understand and model the memory formation using Turing’s
reaction-diffusion equations.

Explain the recall/anticipation process.

Reconstruction of missing samples using spatio-temporal
memory.
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Idea

Charred region

Grasshopper

Uncharred region

Absence of Grasshoppers:
No pattern.

Slow Grasshoppers: No
pattern.

Fire ←→ Grasshoppers:
reaction part.

Hopping of Grasshoppers:
diffusion part.

∂A

∂t
= F (A,B) + DA∇2A

∂B

∂t
= G (A,B) + DB∇2B

J.D. Murray, “Mathematical Biology II,” Springer-Verlag New York, vol. 2,
2003.
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Cheetah spots: simulated

Reconstructed cheetah spots using Turing’s reaction-diffusion equations.
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Architecture

Winner: based on spatio-temporal metric.

Winner: activator; losers: inhibitors.

Interconnected neurons: reaction part.

Propagation of electrical pulse: diffusion part.
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Competitive-cooperative model

Sampling of wave solution.

Theorem

To ensure positivity of activity waves

C1,1 > 2 |Ca,1|+
N−1∑
j 6=a

|Ca,j | − Ca,a, (1)

Cj ,j > |Ca,j |+ |Ca,j−1|+ Cj−1,j−1 (2)

for all j = 1, · · · ,N − 1.
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Spatio-temporal metric

Spatio-temporal metric is given by

∆j =
(∥∥V −W j

∥∥+ 1− αj

)
. (3)

Lemma (Distance metric)

d(V ,W i ) =
(∥∥V −W i

∥∥+ 1− αi

)
is a distance metric.

Potential function is given by

E =
1

2

N∑
j=1

∫
Rd

∆2
j hjP

(
V
)
dV

d
. (4)

Lemma (Distance metric)

The potential function E = 1
2

N∑
j=1

∆2
j hj is convex.
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Learning rule

The learning rule is given by

W i (n + 1) = W i (n)− η(n)
∂E

∂W i

, (5)

Theorem (Convergence)

Let E be a real valued continuous function which is at least twice
differentiable, i.e., E ∈ C2 on Ω. Then, E converges to E ∗ ≤ E (Ω)

if η(n) ≥ (σ−1)∇ET(n)d (n)

L‖d (n)‖2
. Let ∇E ∈ Rd be the gradient of E ,

d (n) ∈ Rd such that ∇ETd (n) < 0 with σ ∈ [ρ, 1] for some ρ > 0.
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Simulation experiments and results: Lorenz dynamical
system

Goal: Illustrate the working of our algorithm by demonstrating
the spatio-temporal structure in the input data embedded
within the activations of the neurons.

Input data Voronoi region after training

Input data Voronoi region during testing

Illustration of anticipation capability of our algorithm.
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Data generation

Training sequence with all the
modes.

Section A of the training sequence.
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Data generation

Section C of the training sequence. Section D of the training sequence.
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Data generation

Test sequence 1. Test sequence 2.
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Dynamic Voronoi tessellations: test sequence 1

Observe: 9→ 2→ 2→ 1.

Theorem

The expansion or the contraction of a Voronoi region is local and
volume conserving.
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Dynamic Voronoi tessellations: test sequence 2

Observe: 9→ 3→ 3→ 3.
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Experiment 2: Logistic equation

Data generated from Logistic
equation.

V n+1 = a(V n − V
2
n).

Data with correlated noise.

nc(n) = 0.2nc(n − 1) + 0.2nc(n − 2)

+ 0.2nc(n − 3) + 0.2nc(n − 4)

+ 0.3nc(n − 5).
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Performance comparison

Cluster distortion without noise Cluster distortion with noise

STSOM: Spatio-temporal self-organizing maps.[1]
STMPF: Spatio-temporal map formation based on potential
function.[2]
SOMTAD: Self-organizing maps with temporal activity
diffusion.[3]
GASTAD: Neural gas with temporal activity diffusion.[3]
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Thank you
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