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Multiple Measurement Vector (MMV) model
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Joint Sparse Support Recovery Problem

• Find the common nonzero support of X = {x1, x2, . . . , xL} using their
compressive, noisy linear measurements Y = {y1, y2, . . . , yL}.

Multiple Sparse Bayesian Learning

• Proposed by Wipf & Rao in 2007.

• Joint sparsity inducing prior on columns of X.

xj
iid∼ N (0,Γ), Γ = diag(γ1,γ2, . . . ,γn).

• Induced observation density:

yj
iid∼ N (0, σ2I + ΦΓΦ)

γ

x1 x2 xL

y1 y2 yL

Figure: Graphical representation

• Maximum likelihood estimate of γ is obtained via
Expectation Maximization (EM) procedure.

γ̂ = arg max
γ∈Rn

+

log p(Y;γ).

Sufficient Conditions for Exact Support

Recovery

• For Gaussian sources...

• xj
iid∼ N (0,Γ∗), for some Γ

∗ = diag(γ∗).

•γ
∗ is at most k-sparse with support S∗.

•γmin � γ
∗
S∗ � γmax.

• MSBL recovers exact support...

P (Support(γ̂) = S∗) ≥ 1 − exp
(

−
η

4
L
)

,

where γ̂ is the k or less sparse output of MSBL, if

• Condition 1: Self Khatri-Rao matrix Φ ⊙ Φ satisfies
restricted isometry property of order 2k, i.e., ∃
δ⊙

2k ∈ (0, 1) such that
(

1 − δ⊙
2k

)

||z||22 ≤ ||(Φ ⊙ Φ)z||22 ≤
(

1 + δ⊙
2k

)

||z||22
holds for all 2k or less sparse vectors z.

• Condition 2: L ≥
(

c1k log n
η

)

, where

η = c2

(

γmin

σ2+γmax

)2(
1 − δ⊙

2k

)

, c1, c2 are universal constants.

More support from fewer measurements

k < Spark(Φ) − 1 (Spark(Φ) − 1) ≤ k ≤
(Krank (Φ ⊙ Φ) /2)

Noiseless meas. L ≥ 1 L ≥ c1

η (k log n)

Noisy meas. L ≥ c1

η (k log n) L ≥ c1

η (k log n)

• For Gaussian measurement matrix Φ ∈ R
m×n,

(n > m2+m
2 )

• Spark(Φ) = m w.h.p.
• Kruskal rank(Φ) = O(m2) w.h.p.

Objectives

• Analyze the support recovery performance of the
Multiple Sparse Bayesian Learning (MSBL) algorithm.

• Devise a low complexity covariance matching based
joint sparse support recovery algorithm.

Rényi Divergence based Covariance

Matching Pursuit (RD-CMP)

• Simplified Gaussian prior on sources

xj
i.i.d.∼ N (0,γ × diag(1S)) ,

• Set S models the common support.
• γ models the common variance of nonzero elements in X

• Induced observation density

⇒ yj
i.i.d.∼ N

(

0, σ2Im + γΦSΦ
T
S

)

.

• Estimate Ŝ via generalized reverse I-projection,

Ŝ = arg min
S⊆[n]

Dα






L∏

j=1
N (yj; 0, RY) , p(Y; S)




 ,

where Dα is the Rényi divergence of order α∈ (0, 1).

• RD-CMP algorithm:

Ŝ = arg min
S⊆[n]

log
∣
∣
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(
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T
S

)∣
∣
∣
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.

• Key idea: Rényi divergence objective is a difference of
two submodular functions.
• Iterative majorization-minimization procedure for finding Ŝ:

Majorization: Replace 1st log-det term with its modular upper
bound.
Minimization: Minimize the resulting supermodular objective
via greedy search.

Simulation results

• RD-CMP Support Recovery Phase Transition

n = 200

SNR = 10 dB
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• Support False Alarm Rate

n = 500

k = 200

m = 100

SNR = 10 dB
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• Support Detection Rate

N = 200

SNR = 10 dB
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• Average runtime vs n ( ml = ⌈50k log n⌉ )

SNR = 20 dB
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Joint Sparse Support Recovery
I Underdetermined multiple measurement vector (MMV) model:
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Goal: Given measurements Y, find
the common support of jointly sparse
columns of X.

Applications:

I Spectrum sensing
I MIMO channel estimation
I Direction of arrival estimation
I Event detection and

localization

Popular recovery algorithms:

I Simultaneous OMP
I Row LASSO
I CS-MuSiC
I AMP-MMV

Can recover supports of size ≤ m.

Covariance matching approach can recover O(m2) sparse support.
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Contributions

I Derive sufficient conditions for exact support recovery in Multiple Sparse
Bayesian Learning (MSBL) algorithm.

I O(m2) support recovery

I Non-asymptotic guarantees

I Propose a new low computational complexity algorithm for support recovery
based on covariance matching.



Sparse Bayesian Learning for MMV model (MSBL)
I A parameterized, Gaussian prior is imposed on the unknown signal matrix X.

Signal prior:

xj
i.i.d∼ N (0,Γ),

where Γ = diag(γ1,γ2, . . . ,γn).

Induced observation density:

yj
i.i.d.∼ N (0, σ2I +ΦΓΦ)

γ
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Graphical representation

I Shared covariance matrix Γ induces joint sparsity in x1, x2, . . . , xL.

I Maximum likelihood (ML) estimation of the covariance parameters γ, i.e.,

γ̂ = arg max
γ∈Rn

+

log p(Y;γ).

I Expectation Maximization (EM) procedure used to find the ML estimate γ̂.

When does MSBL recovers the true support of X?
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Support Recovery in MSBL
Theorem (Sufficient conditions for exact support recovery in MSBL1 )

Let x1, x2, . . . , xL be i.i.d. zero mean jointly sparse Gaussian sources with support
S∗, |S∗| ≤ k, and with variances of the nonzero entries inside [γmin,γmax].

Let γ̂ be the k-sparse output of MSBL. Then,

P (Support(γ̂) = S∗) ≥ 1− exp
(
−
η

4
L
)
,

if conditions C1 and C2 are satisfied.

Condition 1: Self Khatri-Rao matrix Φ�Φ satisfies restricted isometry
property of order 2k, i.e., for all 2k or less sparse vectors z,(

1− δ�2k

)
||z||22 ≤ ||(Φ�Φ)z||22 ≤

(
1 + δ�2k

)
||z||22

holds simultaneously for some δ�2k ∈ (0, 1).

Condition 2: L ≥
(

c1k log n
η

)
, where η = c2

(
γmin

σ2 + γmax

)2(
1− δ�2k

)
1

S. Khanna and C. R. Murthy, On the Support Recovery of Jointly Sparse Gaussian Sources using Sparse
Bayesian Learning. arXiV preprint: arXiv:1703.04930.



Support Recovery in MSBL2

I For Gaussian measurement matrix Φ ∈ Rm×n satisfying δΦ�Φ
2k < 1,

MSBL can perfectly recover any k -sparse support with high probability, if

Case I: k < m

Noiseless measurements L ≥ 1

Noisy measurements L ≥ O (k log n)

Case II: k ∈
[
m , (m2 + m)/4

]
Noiseless measurements L ≥ O (k log n)

Noisy measurements L ≥ O (k log n)

2
S. Khanna and C. R. Murthy, On the Support Recovery of Jointly Sparse Gaussian Sources using Sparse

Bayesian Learning. arXiV preprint: arXiv:1703.04930.



Covariance matching in MSBL

I MSBL’s log-likelihood objective:

− log p(Y;γ) =
L∑

j=1

logN
(

yj ; 0, σ2Im +ΦΓΦT
)

∝ Dφ
(

1
L
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Log Det Bregman Div.
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constant terms

I Log Det Bregman matrix divergence between matrices X,Y ∈ Sm
++ is defined as

Dφ(X,Y) , trace(XY−1)− log |XY−1| −m

MSBL minimizesDφ

 1
L

YYT︸ ︷︷ ︸
emp. cov mat

, σ2Im +ΦΓΦT︸ ︷︷ ︸
param. cov mat

 to find γ.
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A new covariance matching algorithm
I Simplified Gaussian prior on x1, x2, . . . , xL, parameterized directly by support S:

xj
i.i.d.∼ N (0,γ × diag(1S)) ,

yj
i.i.d.∼ N

(
0, σ2Im + γΦSΦ

T
S

)
I Estimate Ŝ via generalized reverse I-projection,

Ŝ = arg min
S⊆[n]

Dα

 L∏
j=1

N (yj ; 0,RY) , p(Y;S)

 ,

where Dα is the Rényi divergence of order α ∈ (0, 1].

Rényi divergence based Covariance Matching Pursuit (RD-CMP):

Ŝ = arg min
S⊆[n]
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I Rényi divergence objective is a difference of two submodular set functions.
I A two step iterative Majorization-minimization procedure for finding Ŝ:

1. Replace 1st log-det term with its modular upper bound.
2. Minimize the resulting supermodular objective via greedy search.
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RD-CMP’s performance3
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3
S. Khanna and C. R. Murthy, Renyi Divergence Based Covariance Matching Pursuit of Joint Sparse Support,

submitted to SPAWC-2017.
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