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INTRODUCTION 

2D GENERALIZED PARTIAL RESPONSE TARGET DESIGN 

Two-dimensional magnetic recording (TDMR) is a promising 
technology for boosting areal densities using sophisticated 
signal processing algorithms within a systems framework. The 
channel impairments comprise of 2D inter-symbol 
interference (ISI), 2D synchronization errors along with media 
and electronic noise sources, making it challenging for 
designing optimum algorithms and architectures for 
read/write channels. 
 
2D ISI detection is known to be NP-hard. This poses us a need 
to develop efficient as well as optimal detection algorithms to 
handle other channel impairments along with the 2D-ISI. 
Voronoi media model of TDMR: 

 GPR targets are widely used in conventional 1D magnetic 
recording 

 Provides a trade-off between low-complexity linear 
equalizer and optimal ML detector. 

MMSE based design of PR target and equalizer: 
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 Aids in detection using row-column detectors. 
 Iterative optimization of 𝑔𝑟 and 𝑔𝑐. 

Magnetic grains are modelled 
as Voronoi regions. Grains are 
magnetized according to the 
bit-value. Each grain 
contributes to a Gaussian 
pulse. 

Continuous-time readback signal is the contribution of all grains on the 
medium. The discrete-time samples are obtained by averaging over a 
bit-region centred at the sampling location. 

(a) Ideal sampling. (b) Non-ideal sampling 
with frequency offsets. 

Signal received from the read channel is equalized using a linear equalizer to achieve a 
desired overall response called the partial response. The resultant signal is detected using a 
ML detector. 

2D SOFT-OUTPUT VITERBI ALGORITHM 
2D ISI Detection - Background: 
 2D ISI detection is NP-Hard: ML detection is not practically 

feasible even for 64x64 page (512B sector). 
 Trellis based algorithms: Use row-column detectors that 

exchange information in an iterative fashion. 
 Graph based detector: Generalized belief propagation 

(GBP) algorithm uses message passing between regions 
instead of between nodes as in conventional BP algorithm. 

 Performance of the 2D ISI detectors is not well 
understood. 

 
2D Soft-output Viterbi Algorithm: 
 Extend ideas of the 1D Viterbi algorithm. 
 Make symbol decisions in raster scan order. 
 Symbol decision is made by maximizing the likelihood 

probability of a local span (𝑴) of the readback samples. 
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 Bit decision is made by minimizing ML metric 
𝑎 𝑖,𝑗 = arg min

𝑎𝑖,𝑗

Γ(𝑖,𝑗) 

 Soft-ouput is obtained by identifying nearest alternative 
path with wrong decision: 

𝐿𝐿𝑅𝑖,𝑗 = min
𝑎𝑖,𝑗=1

Γ(𝑖,𝑗) − min
𝑎𝑖,𝑗=−1

Γ(𝑖,𝑗) 

2D DATA-DEPENDENT NOISE PREDICTION 

For 3x3 ISI, ML metric of a 3x3 span of received samples uses 5x5 span of bits. Out of these 25 
bits, 12 bits are already detected in the raster scan order. 213 ML metrics corresponding to 
the remaining 13 bits are computed to make the current bit-decision.  

 Irregular bit-boundaries result in correlated media noise 
in the neighbouring positions. 

 Noise depends on bit-transitions in crosstrack and 
downtrack directions results in data dependent media 
noise. 

 Use linear noise prediction filters to decorrelate noise 
samples. 

 Use data-dependent noise prediction filters to further 
handle media noise. 

 10% gain in areal density 
due to DDNP at 1.2 Tb/in2 

 Grain size = 10 nm. 
 Bit-size = 22nm x 22 nm 

2D BURST ERASURE CORRECTION 

(a) Distribution of the 
readback sample magnitudes. 
The concentration of readback 
samples at low magnitude 
increases with the increase in 
the defect depth. 

(b) Distribution of data 
patterns at detector’s 
output. Certain data 
patterns occur often at the 
output of the detector 
within the defective region. 

(c) Distribution of magnitude 
of LLRs at the output of 2D 
SOVA in defective and non-
defective regions are 
compared. 

 The readback signal strength is low in the defective region. 
 Following bit-patterns are seen at the output of detector 

in the defective regions: 
0

0 1 0
0

                     
1

1 0 1
1

 

Defect detection and burst erasure correction: 
 Identify potentially defective regions using 
 Threshold on readback signal 
 Identifying defective patter at the output of the 

detector. 
 Defective regions are marked with at least 3x3 bursts. 
 Defective region is grown to include connected regions. 
 The soft-information corresponding to defective region is 

set 0 at the input of the LDPC decoder. 

(a) Potentially defective regions 
identified by thresholding the 
readback signal as well as by 
identifying defective patterns at 
the output. 

(b) Defective region identified 
as large (3x3) clusters. 

(c) Defective region is 
further grown by extending 
to connected regions. 

2D Burst Errors - Background: 
 Thermal asperities result in burst erasures on the medium. 
 Challenge is to correct 2D burst erasures of any shape. 
 
Idea: Use metrics from 2D-SOVA to identify defective region. 
The erasure is indicated in the soft-information at the input 
of the LDPC decoder. 

The proposed defect detector is observed 
to identify the defective region with >90% 
accuracy at the targeted SNR of 14.5 dB. 

The proposed defect detector is able to perform better by 
0.9dB than an ideal defect detector in the case of shallow 
defects ( 𝛼 = 0.5 ) by ignoring only the erroneous 
information from 2D SOVA. 

2D JOINT TIMING RECOVERY AND SIGNAL DETECTION 

2D ITERATIVE TIMING RECOVERY SCHEME 

2D Random Walk Model: 
 Timing estimates are discretized to multiples of 𝛿𝐵𝑥 and 

𝛿𝐵𝑦 . 

 The 2D joint timing recovery and signal detector uses 2D 
random walk model to estimate the timing error. 

𝛿𝜏𝑥 𝑖, 𝑗 ∈ 0, ±𝛿𝐵𝑥 , 𝛿𝜏𝑦 𝑖, 𝑗 ∈ 0, ±𝛿𝐵𝑦  

 
Joint 2D Interpolative Timing Recovery and Signal Detection 
 Extends 2D SOVA to include timing information in the 

definition of the detector’s state. 
 Operates in the raster-scan order. 
 Timing errors and bit-values are estimated by ML criterion 

for a local span of samples. 
 Samples at estimated ideal locations are recovered using 

optimal interpolation filters. 
 Optimal interpolation filters are design for every possible 

discrete time-offset using MMSE criterion. 

Timing offsets are discretized to 
a finer grid of size δ𝐵𝑦 × 𝛿𝐵𝑥. 

A 2D random walk of unit step 
results in 9 positions. 

Signal is oversampled with 
unknown frequency offsets. 

Sampling locations with 2D timing errors: 
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Ideal 
location 

Frequency 
offsets 

Phase 
offsets 

Jitter 
offsets 

Raster scan order: 
 Timing estimates of future bits are not available to 

estimate timing error for the current position. 
 Only forward noise prediction can be done using the past 

decisions. 
Iterative timing recovery scheme: 
 Two instances of the joint timing-detection algorithm 

operating in different directions. 
 The two detectors exchange extrinsic LLRs and timing 

estimates. 

The proposed 2D joint timing 
recovery scheme performs better 
than 2D M&M based timing 
recovery scheme by 0.5 dB. 

The 2D iterative timing recovery 
scheme gives > 1.2 dB gain in 
SNR over the open loop 
configuration. 

2D iterative timing recovery 
scheme gives 10% gain in areal 
density over the open-loop 
configuration at 1 Tb/in2. 
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Burst Erasure Correction for TDMR,” IEEE Trans. Magn., 
Nov. 2016. 

3. C. K. Matcha and S. G. Srinivasa, “Joint Timing Recovery 
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Recording,” IEEE Trans. Magn., Feb. 2017. 
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Two-Dimensional Magnetic Recording

Goal: Increase Areal Densities beyond 1 Tb/in2

Idea: Instead of writing in circular tracks that are far apart, pack the tracks
closer allowing for 2D-ISI and use sophisticated signal processing algorithms.
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(a) Grains are magnetized
according to the bit-values.

(b) Readback-signal is the
sum of contributions from all
grains.

(c) Non-ideal sampling with
frequency offsets.

Figure : Voronoi-based granular media model.
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TDMR Challenges

2D inter-symbol interference (2D ISI):
2D ISI detection in NP-hard.

2D coding techniques are generally ’difficult’.

Media Noise:
Irregularities in sizes/positions of grains become prominent with decrease
in bit-size.

2D Burst Erasures
Traditional 1D ECCs are not suitable.

2D Timing and Synchronization Issues:
Accurate timing is important with the reduction in bit-sizes.

Frequency offsets in down-track direction due to timing errors in
cross-track direction and vice-versa.

Others
Read/write head design, suitable materials for the recording medium, etc.



TDMR Introduction 2D ISI Detection 2D SOVA-TED 2D Defect Detection Conclusion

2D Partial Response (PR) Equalization

Partial response (PR) equalization: Combined advantage of

Low-complexity equalization.

Performance of the ML detector.

∑ PR equalizer
ML

Detectorh(i, j) f(i, j)

Partial response target = g(i, j)

y(i, j)a(i, j) â(i, j)

n(i, j)

z(i, j)
Channel
response

+
+

Figure : Combined response of the channel and the PR equalizer is approximated as PR
target.

Our contributions:
Extending 1D techniques to design 2D PR targets

unit energy and monic constraints.

Design of separable and non-separable 2D PR targets to aid 2D ISI
detection.
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2D Soft-Output Viterbi Algorithm

(i, j) Current bit being detected

S(i,j): Bits to be de-
tected in the future

P(i,j): Bits detected in the past.

5× 5 local span of bits used for ML metric
computation. 12 of these samples are detected in

the past and 12 will be detected in future.

3× 3 local span M of interpolated
samples used for ML metric computation.

(i, j)

Region M with
samples ỹ

(i,j)
M

Locally optimal surface based detector.
Operates in raster scan order.
2D Soft-output Viterbi algorithm:

Maximizes likelihood probability of a local span (M) of yi,j :

x̂i,j = argmax
x

p
(
y (i,j)

M
| a

)
Equivalently, minimizes the ML metric given by:

Γi,j (x) =
∥∥∥y (i,j)

M
− ŷ (i,j)

M

∥∥∥2 ,
where ŷi,j = gT a(i,j)

G are the ideal-samples.
Soft-outputs: Using alternate ML metric corresponding to the wrong
decision.

LLRi,j = min
a,ai,j =−1

Γi,j (x)− min
a,ai,j =1

Γi,j (a) .
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2D SOVA with Timing Error Detection

Idea: Include timing information in the definition of ML metric.

Bx

By

B̄x

B̄y

Non Ideal Sampling with frequency offsets

Ideal Sampling
Grid with discretized timing-offsets δB̄x, δB̄y

Closest discretized-timing estimates

Ideal sampling instances

(0,+δB̄y) (+δB̄x,+δB̄y)

(+δB̄x,+0)

(+δB̄x,−δB̄y)(+0,−δB̄y)(-δB̄x,−δB̄y)

(-δB̄x, 0)

(-δB̄x,+δB̄y)

Random walk with unit step size

The ideal sampling locations are approximated by discretizing the timing
locations.

Using a finer grid with discrete offsets δB̄x and δB̄y .
δB̄x and δB̄y are factors of non-ideal sampling intervals B̄x and B̄y .

Oversample the signal and interpolate to the estimated ideal sampling
locations.

Optimal interpolation filters are designed using MMSE criterion.
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ML Metric with Data-Dependent Noise Prediction

(i, j )
Noise prediction regionN

M
Interpolated samples used for

ML metric computation. Region

Past decisions and timing estimates.

Future decisions and timing estimates.

Forward noise prediction
Noise estimates available in

current iteration

Figure : Noise prediction can be done to reduce the effect of media noise.

Media noise is prominent in TDMR
Arises from the irregular bit-boundaries =⇒ correlated and pattern
dependent.

Correlated media noise has to be whitened for computing ML metric.
Effect of media noise can be reduced by noise prediction using
neighborhood noise samples.
The updated ML metric with DDNP is given by
Γi,j

(
â
(
P(i,j)

)
, ai,j , a

(
S(i,j)

)
, δτ (i, j)

)
=

∥∥∥(êM − µM
(k)

)
W (k)−

(
êN − µN

(k)
)

P (k)
∥∥∥2
,

where
êi,j = ỹi,j − gT a(i,j)

G are noise samples, W (k) and P(k) are noise-whitening
and prediction filters.
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Iterative 2D Timing Recovery Algorithm

LLR1 LLR
(ext)
1

Timing information

LLR2

Timing information

-
-

+

+

2D SOVA with TED

Raster scan
order

2D SOVA with TED

Reverse
raster scan

order

∑

∑Oversampled
readback signal

Figure : Two instances of 2D SOVA-TED operating in a turbo loop. The two
instances exchange timing and bit-decision information with each other.

Idea: Use two instances of joint 2D timing recovery and signal detection
algorithm in a turbo loop

1 Iteratively improve the timing estimates and bit-decisions.
2 Backward noise-prediction can be done using noise samples from previous

iteration.

(i, j )(i, j )

Noise prediction

region N

M

Previous Iteration

Interpolated samples used for

ML metric computation. Region

Noise estimates available in

current iteration

Current Iteration

Past decisions and timing estimates.

Future decisions and timing estimates.
Backward noise prediction

Forward noise prediction

Figure : 7× 7 noise prediction region N. Backward noise prediction can be done using noise
estimates from previous iteration in a closed-loop configuration.
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Simulation Results
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(a) CONFIG1: Raw-BER vs SNR in a
closed-loop configuration.

16 16.5 17 17.5 18 18.5 19 19.5 20
10

−3

10
−2

SNR
elec

B
E

R

 

 

1 iteration

2 iterations
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(b) CONFIG2: Raw-BER vs SNR in a
closed-loop configuration.

> 1.2 dB SNR gain using turbo-loop over open-loop configuration.

Separable frequency offsets give better performance.

Corresponds to 10% gain in areal density.
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2D Defect Detection and Burst Erasure Correction

LDPC
Encoder

Channel
Model

PR
Equalizer

2D SOVA
∑

Defect
Detector

∑

LDPC
Decoder+

+

−
−

LLRdet

LLRdec

LLRext
dec

LLRext
det

¯LLR
ext
det

Figure : Defect detector indicates the estimated erasure locations to the LDPC decoder.

Figure : Defect detection algorithm: a) Potentially defective region is obtained using signal
thresholding and defective patterns; b) Defective regions of at least 3× 3 burst sizes are
identified; c) Defective region is grown to include the potentially defective neighbors.

Defective location is estimated using
Threshold on the signal level.
Defective patterns at the output of 2D SOVA.

Belief propagation (BP) algorithm can correct erasures if the erasure locations
are indicated.
2D SOVA and LDPC decoder operate in turbo loop to achieve further gains.
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Defect Detector - Simulation Results
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(a) Efficiency of the defect detector.
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α = 0.0, No defect detector

α = 0.0, Ideal defect detector

α = 0.0, Proposed defect detector

α = 0.5, Ideal defect detector

α = 0.5, Proposed defect detector

(b) BER performance of the burst erasure
correction algorithm with 38x38 bursts.

>90% efficiency of the defect detection algorithm as designed.
Burst erasure correction with proposed algorithm

is within 0.5 dB of the performance of ideal defect detector for deep defects.
outperforms the ideal defect detector by 0.9 dB for shallow defects.
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Summary

Summary:
We have proposed a low complexity 2D signal detection algorithm:

2D Separable and non-separable PR target design techniques.
2D SOVA with data dependent noise prediction.
1 patent filed on adaptive PR target design.

We have proposed a joint iterative 2D timing recovery and signal detection
algorithm

Iterative scheme to enable backward and forward noise prediction.

We have proposed a method for 2D defect detection and burst erasure
correction.

In progress:
Closing on the exact analysis of 1D sequential detection algorithms.

Analysis of 2D detection and timing recovery algorithms is in progress.
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Thank you!


