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Two-Dimensional Magnetic Recording

Goal: Increase Areal Densities beyond 1 Tb/in?

Idea: Instead of writing in circular tracks that are far apart, pack the tracks
closer allowing for 2D-ISI and use sophisticated signal processing algorithms.
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Figure : Voronoi-based granular media model.
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TDMR Challenges

2D inter-symbol interference (2D ISI):
o 2D ISl detection in NP-hard.
@ 2D coding techniques are generally "difficult’.
Media Noise:
@ Irregularities in sizes/positions of grains become prominent with decrease
in bit-size.
2D Burst Erasures
o Traditional 1D ECCs are not suitable.
2D Timing and Synchronization Issues:
@ Accurate timing is important with the reduction in bit-sizes.

@ Frequency offsets in down-track direction due to timing errors in
cross-track direction and vice-versa.

Others
o Read/write head design, suitable materials for the recording medium, etc.
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2D Partial Response (PR) Equalization

Partial response (PR) equalization: Combined advantage of
@ Low-complexity equalization.

@ Performance of the ML detector.

. 3 Channel PR equalizer zi(i,j ali, 7)

aﬁ(l’ 7) response . ML —>
3 h(i,j) 1, 4) ! Detector

Partial response target = g(4, j)

Figure : Combined response of the channel and the PR equalizer is approximated as PR
target.

Our contributions:
o Extending 1D techniques to design 2D PR targets
e unit energy and monic constraints.
@ Design of separable and non-separable 2D PR targets to aid 2D ISI
detection.
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2D Soft-Output Viterbi Algorithm
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5 local span of bits used for ML metric
computation. 12 of these samples are detected in
the past and 12 will be detected in future.

3 x 3 local span M of interpolated
samples used for ML metric computation.

@ Locally optimal surface based detector.

o Operates in raster scan order.
@ 2D Soft-output Viterbi algorithm:
o Maximizes likelihood probability of a local span (M) of y; ;

% j=arg max p (X(I\I/ij) ‘ é)
e Equivalently, minimizes the ML metric given by:

Fi () = [y — ptin]|?

ij\X) = 1|Ypy Ym

where §; ; = g ( 9 are the ideal- samples.
e Soft-outputs: Usmg alternate ML metric corresponding to the wrong
decision.
LLR;j = min L Fij(x)— min r ij(a).

a,aj j=— a,a; j=
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2D SOVA with Timing Error Detection

Idea: Include timing information in the definition of ML metric.
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@ The ideal sampling locations are approximated by discretizing the timing
locations.
o Using a finer grid with discrete offsets §Bx and 6By.
e 0By and 4By, are factors of non-ideal sampling intervals Bx and B,.
@ Oversample the signal and interpolate to the estimated ideal sampling
locations.
o Optimal interpolation filters are designed using MMSE criterion.
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ML Metric with Data-Dependent Noise Prediction

. ™ Noise estimates available in
current iteration

.
e ™ Noise prediction region N
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0 b U U U B O o o ® Past decisions and timing estimates.

o Future decisions and timing estimates.

Figure : Noise prediction can be done to reduce the effect of media noise.

@ Media noise is prominent in TDMR
o Arises from the irregular bit-boundaries = correlated and pattern
dependent.

Correlated media noise has to be whitened for computing ML metric.

Effect of media noise can be reduced by noise prediction using
neighborhood noise samples.

The updated ML metric with DDNP is given by
Tij (é (P(i’j)> ,aij,a (S(i’j)) 751(",1'))

= [ (em =y (0) W)~ (e — y(0)) PO

where N
° & ;=7Fij —ng(é’J) are noise samples, W (k) and P(k) are noise-whitening
and prediction filters.
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Iterative 2D Timing Recovery Algorithm

- (ext) ’
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Figure : Two instances of 2D SOVA-TED operating in a turbo loop. The two
instances exchange timing and bit-decision information with each other.

Idea: Use two instances of joint 2D timing recovery and signal detection
algorithm in a turbo loop
© lteratively improve the timing estimates and bit-decisions.
© Backward noise-prediction can be done using noise samples from previous
iteration.

Noise estimates available in

e o o o o o o o o Noisc prediction P—
current iteration

region N

Interpolated samples used for
ML metric computation. Region M
* Past decisions and timing estimates.

© Future decisions and timing estimates.

Previous Iteration Current Iteration

Figure : 7 x 7 noise prediction region N. Backward noise prediction can be done using noise
estimates from previous iteration in a closed-loop configuration.
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Simulation Results
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(a) CONFIG1: Raw-BER vs SNR in a (b) CONFIG2: Raw-BER vs SNR in a
closed-loop configuration. closed-loop configuration.

@ > 1.2 dB SNR gain using turbo-loop over open-loop configuration.
@ Separable frequency offsets give better performance.

@ Corresponds to 10% gain in areal density.
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2D Defect Detection and Burst Erasure Correction

. LDPC | Channel PR o
Encoder Model Equalizer 2D SOVA

Detector

Figure : Defect detector indicates the estimated erasure locations to the LDPC decoder.

T TIT
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Figure : Defect detection algorithm: a) Potentially defective region is obtained using signal
thresholding and defective patterns; b) Defective regions of at least 3 x 3 burst sizes are
identified; c) Defective region is grown to include the potentially defective neighbors.

@ Defective location is estimated using
e Threshold on the signal level.
o Defective patterns at the output of 2D SOVA.
@ Belief propagation (BP) algorithm can correct erasures if the erasure locations
are indicated.
@ 2D SOVA and LDPC decoder operate in turbo loop to achieve further gains.
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Defect Detector - Simulation Results

defect detector efficiency

—— CONFIGI: PW50, =30 nm, PW50, =30 nm

- o - CONFIG2: PW50, =30 nm, PW50, =40 nm
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(a) Efficiency of the defect detector. (b) BER performance of the burst erasure
correction algorithm with 38x38 bursts.

@ >90% efficiency of the defect detection algorithm as designed.

@ Burst erasure correction with proposed algorithm
e is within 0.5 dB of the performance of ideal defect detector for deep defects.
o outperforms the ideal defect detector by 0.9 dB for shallow defects.
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Summary

Summary:

@ We have proposed a low complexity 2D signal detection algorithm:

e 2D Separable and non-separable PR target design techniques.
e 2D SOVA with data dependent noise prediction.
o 1 patent filed on adaptive PR target design.

@ We have proposed a joint iterative 2D timing recovery and signal detection
algorithm

o lterative scheme to enable backward and forward noise prediction.

@ We have proposed a method for 2D defect detection and burst erasure
correction.

In progress:
o Closing on the exact analysis of 1D sequential detection algorithms.

o Analysis of 2D detection and timing recovery algorithms is in progress.
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