Converting Cryptographic Schemes from Composite Order to Prime Order Pairing

R. Kabaleeshwaran, M. Prem Laxman Das^{*} & Sanjit Chatterjee

Dept. of CSA, Indian Institute of Science, *SETS, Chennai.

kabaleeshwaran.r@csa.iisc.ernet.in

Introduction

- Bilinear pairing used to design many cryptographic schemes,
- One round 3-party key agreement protocol,
- Identity-based encryption (IBE),
- Aggregate signatures, etc.,
- Composite order pairing used to design cryptographic schemes with additional properties
- -Boneh-Goh-Nissim partial homomorphic encryption scheme (BGN) [BGN05],
- Predicate encryption (KSW08, SSW09)
- Signatures with additional properties [BW07, SW07, MSF10], etc.,

Our unbalanced projecting framework

We formulate Freeman projecting framework in unbalanced pairing setting.

- Using Chatterjee et al. techniques on Ghadafi et al. NIWI proof system, we obtain Type-3 variant of proof system, from this we extracted unbalanced projecting framework,
- $G = G_1 \oplus G_2 \cong \mathbb{G}_1^2$, $H = H_1 \oplus H_2 \oplus H_3 \cong \mathbb{G}_2^3$, $G_T = \mathbb{G}_T^6$, pairing map $e : G \times H \to G_T$ is defined as $e(\mathfrak{g}^{\vec{x}},\mathfrak{h}^{\vec{y}}) := \hat{e}(\mathfrak{g},\mathfrak{h})^{\vec{x}\otimes\vec{y}}$, for any $\mathfrak{g}^{\vec{x}}\in G$ and $\mathfrak{h}^{\vec{y}}\in H$.
- Security: $DDH_{\mathbb{G}_1} \Rightarrow (2,1)$ - SDP_G and $DLin_{\mathbb{H}} \Rightarrow (3,2)$ - $SDP_{\mathbb{H}^3}$, where $\mathbb{H} = \langle (\mathfrak{g}, \mathfrak{h}) \rangle$.

Results

Motivation

- Composite order bilinear group has special properties like projecting, cancelling.
- useful to construct new cryptographic primitives
- But composite order bilinear group is more expensive than the prime order version
- -Guillevic showed that composite order pairing is 254 times slower than prime order pairing on particular choice of underlying elliptic curve.
- Transformation is not a block box, it is protocol specific.

Definition

Bilinear group generator An algorithm $\mathcal{G}(\lambda) \to (G, H, G_T, e, G_1, H_1, G'_T)$, where G, H and G_T are abelian groups and subgroups $G_1 \subset G$ and $H_1 \subset H$ and $e : G \times H \longrightarrow G_T$ is a bilinear map. The properties of the efficiently computable map e are as follows:

• *Bilinearity*: For all $g, g' \in G$ and $h, h' \in H$, one has

 $e(q \cdot q', h \cdot h') = e(q, h) \cdot e(q, h') \cdot e(q', h) \cdot e(q', h'),$

- Non degeneracy If a fixed $g \in G$ satisfies e(g,h) = 1 for all $h \in H$, then g = 1 and similarly for elements of H
- **Projecting property** \mathcal{G} is said to be projecting if it outputs homomorphisms π_G , π_H and π_T defined on G, H and G_T to themselves, such that

```
• G_1 \subseteq \text{Ker}(\pi_G), H_1 \subseteq \text{Ker}(\pi_H) \text{ and } G'_T \subseteq \text{Ker}(\pi_T) \text{ and }
```

```
• e(\pi_G(g), \pi_H(h)) = \pi_T(e(g, h)), for all g \in G and h \in H.
```

Cancelling property \mathcal{G} is said to satisfy the *r*-cancelling property if, it in addition, outputs groups $G_i, H_i, i = 1, \ldots, r$, such that

```
• G \cong G_1 \times \cdots \times G_r and H \cong H_1 \times \cdots \times H_r and
```

```
• e(g_i, h_j) = 1, whenever g_i \in G_i, h_j \in H_j and i \neq j.
```

Round Optimal Blind Signature instantiations

- Convert ROBS using Freeman's unbalanced projecting framework.
 - Blindness under SDP in G and \mathbb{H}^3
 - OMU under co-DHP* in \mathbb{G}_1 and \mathbb{G}_2
 - * We use Seo-Cheon proof strategy,
 - * Avoid Translating property [SC12], as simulator knows the subgroup generators exponent,
 - Both scheme construction and blindness proof uses neither projecting nor cancelling. But OMU uses only projecting, not cancelling as opposed to [MSF10]
- Convert ROBS using Seo-Cheon's projecting cum cancelling framework

Computer Science and Automation

- Blindness under SDP in G and H
- OMU under security of Waters signature defined in $G_2 \subseteq G$ and $H_2 \subseteq H$.
- * We use [MSF10] proof strategy
- -OMU proof uses both projecting and cancelling as similar to [MSF10].
- Comparison: Communication cost Unbalanced; Computation cost - Seo-Cheon.

Table 1: Comparing ROBS instantiation	using unbalanced	l projecting framework	and Seo-Cheon's framework
---------------------------------------	------------------	------------------------	---------------------------

	Unbalanced Framework	Seo-Cheon Framework
CRS	$1792 \mathbb{G}_1 + 1077 \mathbb{G}_2 $ \checkmark	$1436 \mathbb{G}_1 + 1432 \mathbb{G}_2 $
Key	$2 \mathbb{G}_1 + 6 \mathbb{G}_T $	$ 4 \mathbb{G}_1 +2 \mathbb{G}_T \checkmark$
req	$4096 \mathbb{G}_1 + 2304 \mathbb{G}_2 $ \checkmark	$3072(\mathbb{G}_1 + \mathbb{G}_2)$
BSig	$6 \mathbb{G}_1 +3 \mathbb{G}_2 \checkmark$	$12 \mathbb{G}_1 + 4 \mathbb{G}_2 $
Sig	$4 \mathbb{G}_1 +3 \mathbb{G}_2 \checkmark$	$8 \mathbb{G}_1 + 4 \mathbb{G}_2 $
Setup	$1790E_{\mathbb{G}_1} + 1075E_{\mathbb{G}_2}\checkmark$	$1436E_{\mathbb{G}_1} + 1432E_{\mathbb{G}_2}$
KeyGen	$6\mathbb{P} + 2E_{\mathbb{G}_1}$	$4\mathbb{P} + 2M_{\mathbb{G}_T} + 4E_{\mathbb{G}_1}\checkmark$
User	$48\mathbb{P} + 6M_{\mathbb{G}_T} + 8708E_{\mathbb{G}_1} +$	$32\mathbb{P} + 18M_{\mathbb{G}_T} + 3592E_{\mathbb{G}_1} +$
	$7572M_{G_1}+$	$5416M_{G_1} +$
	$4611(E_{\mathbb{G}_2} + M_{\mathbb{G}_2})$	$2564E_{\mathbb{G}_2} + 1540M_{\mathbb{G}_2}\checkmark$
Signer	$13312\mathbb{P} + 6144M_{\mathbb{G}_T} + 6E_{\mathbb{G}_1} +$	$6144\mathbb{P} + 4096M_{\mathbb{G}_T} + 12E_{\mathbb{G}_1} +$
	$1226M_{\mathbb{G}_1} + 3E_{\mathbb{G}_2} +$	$2452M_{\mathbb{G}_1} + 4E_{\mathbb{G}_2} +$
	$768M_{\mathbb{G}_2} + 512I_{\mathbb{G}_1} + 768I_{\mathbb{G}_2}$	$1024M_{\mathbb{G}_2} + 1024(I_{\mathbb{G}_1} + I_{\mathbb{G}_2})$
Verify	$24\mathbb{P} + 6M_{\mathbb{G}_T} + 712M_{\mathbb{G}_1}$	$16\mathbb{P} + 10M_{\mathbb{G}_T} + 1424M_{\mathbb{G}_1}\checkmark$

For any group $X \in \{\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T\}$, we denote E_X, M_X, I_X and |X| as the exponentiation, multiplication and inversion in X and bit size of X and \mathbb{P} denotes atomic asymmetric pairing.

Ring Signature instantiation

- Convert using Freeman projecting framework with full decomposition
- $-G = G_1 \oplus G_2 \cong \mathbb{G}_1^2, H = H_1 \oplus H_2 \cong \mathbb{G}_2^2$ and $G_T = \mathbb{G}_T^4$, *e* - tensor product
- Both scheme construction and anonymity proof uses neither projecting nor cancelling. But UF proof uses only projecting, not cancelling as opposed to [SW07]
 - Anonymity under SDP in G and H,
- UF under co-CDH+ in \mathbb{G}_1 and \mathbb{G}_2 ,
- Convert using Seo-Cheon's framework
- Similar to the previous instantiation, except bilinear group construction as described in Seo-Cheon framework
- Inefficient instantiation

Table 2: Comparing Freeman framework versus Seo Cheon's projection cum cancelling framework

Framework	Freeman	Seo-Cheon
$1 G , 1 H , 1 G_T $	$2 \mathbb{G}_1 , 2 \mathbb{G}_2 , 4 \mathbb{G}_T $	$4 \mathbb{G}_1 , 4 \mathbb{G}_2 , 2 \mathbb{G}_T $
O_G, O_H, O_{G_T}	$2O_G, 2O_H, 4O_{G_T}$	$4O_G, 4O_H, 2O_{G_T}$
1P	$4\mathbb{P}$	$4\mathbb{P}+2M_{\mathbb{G}_T}$

The operation O can be either exponentiation or multiplication or

inversion.

Conclusion

- Efficient instantiation of ROBS as compared to previous instantiation
- Converted Shacham-Waters Ring Signatures and Boyen-Waters Group Signatures.
- Framework for projecting cum cancelling is not essential for converting any existing scheme, but gives efficient instantiation of round optimal blind signature scheme.

Major conversion steps [Fre10]

- 1. Write the scheme in the abstract group framework with the appropriate pairing,
- Translate BGN scheme from symmetric to asymmetric groups,
- 2. Translate the corresponding security assumption to general framework,
- Translate SDP in G_{pq} to (2,1)-SDP in \mathbb{G}_1^2 and \mathbb{G}_2^2 ,
- 3. Instantiate scheme and assumption using the abstract groups, • DDH in \mathbb{G}_1 and \mathbb{G}_2 implies (2,1)-SDP in \mathbb{G}_1^2 and \mathbb{G}_2^2 .

Seo-Cheon's projecting cum cancelling framework [SC12]

• Here $G = G_1 \oplus G_2 \cong \mathbb{G}_1^4$, $H = H_1 \oplus H_2 \cong \mathbb{G}_2^4$, $G_T = \mathbb{G}_T^2$, $e: G \times H \to G_T$ is defined as $e(\mathfrak{g}^{(\alpha_{11},\alpha_{12},\alpha_{21},\alpha_{22})},\mathfrak{h}^{(\beta_{11},\beta_{12},\beta_{21},\beta_{22})}) := \left(\hat{e}(\mathfrak{g}^{\alpha_{11}},\mathfrak{h}^{\beta_{11}})\,\hat{e}(\mathfrak{g}^{\alpha_{12}},\mathfrak{h}^{\beta_{12}}),\,\,\hat{e}(\mathfrak{g}^{\alpha_{21}},\mathfrak{h}^{\beta_{21}})\,\hat{e}(\mathfrak{g}^{\alpha_{22}},\mathfrak{h}^{\beta_{22}})\right)$ • We proved security under SXDH instead of non-standard assumption.

References

- [BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In *TCC*, pages 325–341, 2005.
- [BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures. In PKC 2007, pages 1-15, 2007.
- [Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In EUROCRYPT, pages 44-61, 2010.
- [MSF10] Sarah Meiklejohn, Hovav Shacham, and David Mandell Freeman. Limitations on transformations from composite-order to prime-order groups: The case of round-optimal blind signatures. In ASIACRYPT, pages 519-538, 2010.
- Jae Hong Seo and Jung Hee Cheon. Beyond the limitation of prime-order bilinear groups, [SC12] and round optimal blind signatures. In TCC, pages 133–150, 2012.
- Hovav Shacham and Brent Waters. Efficient ring signatures without random oracles. In [SW07] *PKC 2007*, pages 166–180, 2007.

Converting cryptographic schemes from composite-order to prime-order pairing

R. Kabaleeshwaran

Dept of CSA, Indian Institute of Science, Bangalore

April 8th, EECS SYMPOSIUM 2017, Bangalore

Joint work with Sanjit Chatterjee and M. Prem Laxman Das

Motivation

- In 2005, Boneh-Goh-Nissim (BGN) proposed partial homomorphic encryption scheme
- BGN setting: $G = \langle g \rangle$, $|G| = p \cdot q$, $g_1 \in G_p \subset G$, $e : G \times G \to G_T$
- Ciphertext $c = g^m g_1^r$ with $m \in \{0,1\}^n$, for small n
 - Additive homomorphism: $c_1 \cdot c_2 = g^{m_1+m_2}g_1^{r_1+r_2}$
 - One-time multiplicative homomorphism: $e(c_1, c_2) = e(g, g)^{m_1 m_2} e(g, g_1)^r$
 - Evaluate quadratic polynomial on ciphertexts
- secure under subgroup decision problem (SDP) in G
- Application: E-voting scheme
- Inefficient: defined over composite-order group
 - Approx. 254 times slower than prime order pairing

Background

Freeman defined two properties for converting to prime-order pairing

= 1

Project

• Projecting:

Major conversion steps

- 1. Express the scheme in the abstract group framework
 - Translate BGN scheme from symmetric to asymmetric groups,
- 2. Translate the corresponding security assumption to general framework,
 - Translate SDP in G to (2,1)-SDP in \mathbb{G}_1^2 and \mathbb{G}_2^2 , which is reduced from DDH in \mathbb{G}_1 and \mathbb{G}_2
- 3. Instantiate scheme and argue the security in the abstract groups,
 - \bullet Prove the security of BGN under DDH in \mathbb{G}_1 and \mathbb{G}_2

- Partial list of composite-order schemes:
 - Katz-Sahai-Waters predicate encryption
 - Shen-Shi-Waters predicate encryption in private-key setting
 - Lewko-Waters identity based encryption
 - Shacham-Waters ring signature scheme
 - Meiklejohn et al.'s round optimal blind signature scheme
 - Boyen-Waters group signature scheme, etc.,
- Frameworks available
 - Projection frameworks: Groth-Sahai, Freeman, Seo's optimal symmetric and Herold et al's polynomial
 - Cancelling frameworks: Freeman, Okamoto-Takashima (Dual pairing vector spaces DPVS)
 - Projecting cum cancelling framework: Seo-Cheon, Lewko-Meiklejohn
 - Projecting and Translating: Seo-Cheon

Cryptosystems - converting frameworks

- Protocol-centric approach comparative analysis of different frameworks
- This talk:
 - Shacham-Waters ring signature scheme Not yet converted
 - More efficient instantiation of round optimal blind signature scheme

Ring Signature Scheme

- Ring hides the actual signer in a ring of public keys
- Security attributes:
 - Anonymous signature should hide the signer information
 - Unforgeable one of the member should sign the message

Application: Govt. officials exposing the corruption without revealing their identity

- Defined in symmetric composite order group G, $|G| = p \cdot q$
- Cryptographic tools GOS NIWI proof (hides signers pk) + Waters signatures (generates the signature)
- Anonymity under SDP in G
- Unforgeability (UF) under security of Waters signature in G_q
- UF proof requires
 - Cancelling well-formedness of the public parameter and ring signature
 - Projecting obtain CDH solution from forgery

Our instantiation

- Extended Freeman projection definition to projection with full decomposition
 - $G = G_1 \oplus G_2 \cong \mathbb{G}_1^2$, $H = H_1 \oplus H_2 \cong \mathbb{G}_2^2$ and $G_T = \mathbb{G}_T^4$, $e : G \times H \to G_T$ is defined using tensor product
- Anonymity under SDP; UF under co-DHP+ in \mathbb{G}_1 and \mathbb{G}_2 ,
- UF proof uses only projecting,
 - We avoid cancelling by using full decomposition setting
 - ullet Simulator constructs the subgroup, can compute $g_1^a \to g_2^a$
- More efficient instantiation as compared to Seo-Cheon's projecting cum cancelling framework

Framework	Freeman	Seo-Cheon
$1G, 1H, 1G_T$	$2\mathbb{G}_1$, $2\mathbb{G}_2$, $4\mathbb{G}_7$	4G1, 4G2, 2G7
O_G, O_H, O_{G_T}	$2O_G, 2O_H, 4O_{G_T}$	$4O_{G}, 4O_{H}, 2O_{G_{T}}$
1 <i>P</i>	4₽	$4\mathbb{P}+2M_{\mathbb{G}_T}$

The operation O can be either exponentiation or multiplication or inversion.

Blind signature

- User blind the message and unblind the signature
- Security attributes:
 - Blindness: Signer should not learn any information about message
 - Unforgeability: Conservation of signature, user cannot produce forgery

Application: E-Cash, E-Voting

Meiklejohn-Shacham-Freeman's construction

- Defined in composite-order group G, $|G| = p \cdot q$
- Cryptographic tools GOS NIWI proof (hides the message from signer) + Waters signatures
- Blindness under SDP in G
- Unforgeability (UF) proof requires
 - Cancelling well-formedness of blinded signature
 - Projecting obtain CDH solution from forgery

Seo-Cheon's prime order instantiation

- Converted using projecting framework in symmetric pairing
- Used additional property called "translating property"
- Used projecting property and avoided cancelling property

Defined unbalanced unbalanced projecting framework

- Formulate variant of Freeman projecting framework in unbalanced pairing setting, G = G₁², ℍ³ ⊂ G₁³ × G₂³, G_T = G_T⁶, e - tensor product.
- UF proof uses Seo-Cheon proof strategy,
 - $\bullet\,$ secure under co-DHP* in \mathbb{G}_1 and \mathbb{G}_2
 - uses only projecting, neither cancelling nor translating
 - Proof strategy: simulator construct the subgroups generator exponent and uses the knowledge of these exponents
- \bullet Blindness under NIWI proof system defined in ${\it G}$ and \mathbb{H}^3
 - used random self reducibility for tighter reduction

- Convert ROBS using Seo-Cheon framework
- Signature size is better in unbalanced framework
- Time computation of Sign() and Verify() is better in Seo-Cheon framework

- Framework for projecting cum cancelling is not essential for converting any existing scheme, but gives efficient instantiation of ROBS
- Instantiated
 - Shacham-Waters ring signatures
 - Meiklejohn et al.'s round optimal blind signatures
 - Boyen-Waters group signatures.

[CDK-2017] Sanjit Chatterjee, M. Prem Laxman Das and R. Kabaleeshwaran, "Converting pairing-based cryptosystems from composite to prime order setting – A comparative analysis", (*In submission*)