Learning deep visual representations from side and
additional information

*» Convolutional Neural Networks have resulted in unprecedented performances
“* CNNs learn recognition from large scale datasets that offer category labels
“* We exploit the useful “side and additional information” to enrich the representations

with more semantics.

\/

% "“Objectness” <+ Textual tags associated with images
*» Strong supervision offered by the captions.

Encoding “Objectness”

¢ Objects compose scenes = Detect and describe objects - scene summary
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“» CNNSs’ recognition is remarkable and show robustness to
¢ Occlusion, pose, scale, intra class variation, etc.

s Same size as the CNN embeddings — dimensionality reduction

Table 1. Retrieval results on the Holidays dataset. Best performances in each column are shown in bold. (V indicates result obtained with
manual geometric alignment and retraining the CNN with similar database.) Numbers indicate mAP (mean average precision).

Dimension
METHOD 32 64 128 256 512 1024 2048 4096 8064 > 10K
VLAD 484 523 55.7 - 59.8 - 62.1 55.6
Fisher Vector 48.6 52 56.5 - 61 - 62.6 595
VLAD +adapt+ innorm - - 62.5 - - - - - - 64.6
Fisher+color - - - 77.4
Multivoc-VLAD - - 61.4 - - - - -
Triangulation Embedding - - 61.7 - - 72.0 - - 77.1
Sparse-coded Features - - 0.727 - - - - - 76.7
Neural Codes 683 729 789V 749 749 - - 79.3V
MOP-CNN - - - - - - 80.2 789
gVLAD - - 77.9 - - - - 81.2
Proposed 73.96 80.67 85.09 87.77 88.46 8658 8594 85.94

Encoding Textual tags

* Images on web surrounded by rich text — multi-modal nature
“ Encode (via language descriptors) and pool — representation from text

s Learn a classifier on top of the multi-modal representation
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Understanding deep visual representations

In spite of impressive performance, CNNSs offer limited transparency
»» Therefore treated as black-boxes
»» One way to understand - determine the important image locations that guide the
CNN's prediction

* We exploit the feature dependencies across the layers to locate the evidence

*+ Provides visual explanations
*» Perform
“ Weakly supervised
localization
s Saliency

s Caption grounding

Adversarial Feature Augmentation (AFA) for learning
robust models

» Adversarial samples fool ML systems — CNNs are no exception
s Solution: Adversarial training is required
¢ Train with adversarial + normal samples

“* Highly inefficient

“* We propose a feature level augmentation technique to handle ANY adversarial

attack

»» Augment the embeddings (data) into adversarial directions

¢ Include them in the training with the original labels

Stronger Supervision

Adversarial Training, AFA and Normal Training for FGSM adversaries on
CIFAR-10 dataset

¢ Transfer learning is common

*» Current models are pre-trained on objects/scenes

*» Applications like retrieval require scene summary

* Labels are not strong to summarize scene X,
% I - ©.0 O O O
“ Explore transfer learning from caption generators N et
(FIC) and region descriptors (DenseCap) :
@ © © ®@ © ©

* Impose pairwise constraints

100 wedee Adversarial
Training
i AFA
_ 75
S Normal
< Training
S
E 50
=
L]
3
© 25
0
1/255 2/255 3/255 4/255 5/255
epsilon
Conclusions

<

»» Deep learned image representations can be made more discriminative and
useful via augmenting with task specific side information and additional

semantic information

(4

»» Despite their excellent performance, CNNs leave various design aspects
opaqgue. Visualizing the predictions can help develop more useful insights into
the design and training of these complex ML systems.

*» Adversarial feature augmentation can help CNNs learn smoother mappings

and make them robust to multiple adversaries.
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« Learning visual representations using Convolutional Neural Networks
> Side and additional information
m objectness, textual tags, etc.
> How can we encode it to augment the semantics ?
% Understanding the representations
> Visual explanations for predictions

> Adversarial augmentation
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The image representations
ierarchy of features
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The side and additional info.

< Objectness
<% Textual tags

% Strong supervision
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«» Typical images contain multiple (unseen) objects (scales), scenes

Typical real world images Dataset train images
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*» Objects compose scenes
+» Detect and describe objects — scene summary

Max
Pooling

Object like
regions

- Object level deep feature pooling for compact Image representation, Konda Reddy Mopuri et al. CVPRW 2015
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Table 1. Retrieval results on the Holidays dataset. Best performances in each column are shown in bold. (V indicates result obtained with
manual geometric alignment and retraining the CNN with similar database.)

Dimension
METHOD 32 64 128 256 512 1024 2048 4096 8064 > 10K
VLAD [16] 48 4 52.3 55.7 - 59.8 - 62.1 55.6
Fisher Vector[27] 48.6 52 56.5 - 61 - 62.6 59.5
VLAD +adapt+ innorm [ /] - - 62.5 - - - - - - 64.6
Fisher+color [1 3] - - - - - - - 77.4
Multivoc-VLAD [ 14] - - 614 - - - - -
Triangulation Embedding [17] - - 61.7 - - 72.0 - - 77.1
Sparse-coded Features [Y] - - 0.727 - - - - - - 76.7
Neural Codes [2] 68.3 729 789V 749 74.9 - - 79.3V
MOP-CNN [12] - - - - - - 80.2 78.9
gVLAD [33] - - 77.9 - - - - 81.2
Proposed 73.96 80.67 85.09 87.77 88.46 86,58 8594 859

Object level deep feature pooling, Konda Reddy Mopuri et al. CVPRW 2015
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The side and additional info.

<% Objectness

% Textual tags

% Strong supervision
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Images on web

<% Surrounded by rich text —
multi-modal nature

white, men, guys, street,
performance, show, sofa,
design, fashion

Tags

“five large white wind turbines are standing on a dark green slope
connected by brown dirt roads”
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* Traditional methods - BoW encoding
> |nefficient, Not semantic

¢ Cross modal/Joint learning - CCA, CorrNets, etc.
> Scaling issues

*¢ Neural nets based language models
> Semantic and preserve regularities

- > Ex: Word2vec, glove, thought vectors, etc.
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Convnet
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> Noise and stop words removal, T
emmatizing et ——
white, men, guys, street, 4@'5
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text
Learn a classifier on top of the

multi-modal representation

Konda Reddy M et al., “Towards Semantic Visual Representation: Augmenting Image
Representation with Natural Language Descriptors” (ICVGIP 2016)
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Drawbacks

< Noisy tags
« Visual similarity vs learned semantics
> Ex: Cat and dog might have similar embeddings from text

< Minor improvements oo,
-l
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The side and additional info.

<% Objectness

<% Textual tags

¢ Strong supervision
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Labels are weak

#» Current models are pretrained on
objects/scenes

% Applications like retrieval require
whole scene summary

K/

« Labels — Not strong enough to

summarize scene

Sample query image
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A man holding a child while standing at the fence The horse and puppy are separated by the mesh
of an elephant zoo enclosure. fence.



(DS.IISc.ac.in artment of Computational and Data Sciences

Caption generators (FIC) & Dense region
descriptors (DenseCap)

A man riding a wave on top of a surfboard

:>.- LSTM |---B LSTM |----- > | LSTM
A 0
FIC El E

a man and a dog. a green grassy field. a
metal fence. a black and white dog. a brick
waII metal fence behlnd the fence.

. green grass on the
ground. - , a black
and white dog.
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Transfer learning from caption
generators

«» Exploit the features learned by the systems with strong
supervision
«» Transfer their learning for our target applications

¢ Perform learning on top with task specific constraints
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Transfer learning with task
specific constraints
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- Konda Reddy M et al., “Deep Image Representations using Caption generators” (ICME 2017)
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Retrieval results
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Understanding the
representations
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% Lack of decomposability

< No transparency

> when they fail - no warning, no explanation

«» Suffer from the trade-off b/w “Accuracy” and

“Interpretability”
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Additional information

< Reason an inference

< Visual explanations
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% Exploit the feature dependencies to locate the evidence

¢ Iteratively backtrack onto the image from the predicted label
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Adversarial Images
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Shetland sheepdog

Paintbrush
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Why do they exist 7

<% Multiple hypotheses
> Linearity, low probability pockets in the feature space,
sparse training data, etc.

«» Multiple methods to generate them
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Current ways of handling it

% Adversarial training
«» Each iteration — Train with Normal + Adversarial images
% Highly inefficient

> Compute adversarial images at each iteration
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< Expand features in the embedding space
#* Choose random adversarial directions

X" =X+n*x(X,—X)
+* Replace normal data with augmented data

> No extra computations

> No knowledge about the nature of attack




The tradeoff

Adversarial Training, AFA and Normal Training for FGSM adversaries on

Classification Acc.
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Deep learned image representations can be made more discriminative and

useful

> Augment with task specific side information and additional semantic
information

Visualizing the predictions can help to develop more useful insights into the

design and training of these complex ML systems.

“Adversarial images” is an intriguing aspect of ML systems that demands
rigorous study.
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