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 Convolutional Neural Networks have resulted in unprecedented performances

 CNNs learn recognition from large scale datasets that offer category labels

 We exploit the useful “side and additional information” to enrich the representations 

with more semantics. 
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Learning deep visual representations from side and 

additional information

Encoding “Objectness”

 Objects compose scenes  Detect and describe objects  scene summary

 CNNs’ recognition is remarkable and show robustness to

 Occlusion, pose, scale, intra class variation, etc.

 Same size as the CNN embeddings → dimensionality reduction

Encoding Textual tags

 Images on web surrounded by rich text → multi-modal nature

 Encode (via language descriptors) and pool → representation from text

 Learn a classifier on top of the multi-modal representation

Stronger Supervision

 Transfer learning is common

 Current models are pre-trained on objects/scenes

 Applications like retrieval require scene summary

 In spite of impressive performance, CNNs offer limited transparency

 Therefore treated as black-boxes

 One way to understand  determine the important image locations that guide the 

CNN’s prediction

 We exploit the feature dependencies across the layers to locate the evidence

 Labels are not strong to summarize scene

 Explore transfer learning from caption generators 

(FIC) and region descriptors (DenseCap)

 Impose pairwise constraints

Understanding deep visual representations

 Provides visual explanations

 Perform 

 Weakly supervised 

localization

 Saliency

 Caption grounding 

Adversarial Feature Augmentation (AFA) for learning 

robust models

 Adversarial samples fool ML systems – CNNs are no exception

 Solution: Adversarial training is required

 Train with adversarial + normal samples

 Highly inefficient

 We propose a feature level augmentation technique to handle ANY adversarial 

attack

 Deep learned image representations can be made more discriminative and 

useful via augmenting with task specific side information and additional 

semantic information

 Despite their excellent performance, CNNs leave various design aspects 

opaque. Visualizing the predictions can help develop more useful insights into 

the design and training of these complex ML systems.

 Adversarial feature augmentation can help CNNs learn smoother mappings 

and make them robust to multiple adversaries.

Conclusions

 Augment the embeddings (data) into adversarial directions

 Include them in the training with the original labels

 “Objectness”

 Strong supervision offered by the captions.

 Textual tags associated with images

 Classification 

performance on 

MIRFlickr dataset

 25K images from 39 

concepts
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What we will discuss
❖ Learning visual representations using Convolutional Neural Networks

➢ Side and additional information

■ objectness, textual tags, etc.

➢ How can we encode it to augment the semantics ?

❖ Understanding the representations

➢ Visual explanations for predictions

➢ Adversarial augmentation
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Representation learning using 
CNNs

Image

Class 
Probabilities

Dog

Cat

Table

Lot of 
annotated 
data

DATA 
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The image representations
Hierarchy of features
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The side and additional info.

❖ Objectness

❖ Textual tags

❖ Strong supervision
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The practical issues

❖ Typical images contain multiple (unseen) objects (scales), scenes

Dataset train imagesTypical real world images

≠
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Objectness prior

❖ Objects compose scenes

❖ Detect and describe objects → scene summary

Object like 
regions

Shared 
CNN

Max 
Pooling

Object level deep feature pooling for compact Image representation, Konda Reddy Mopuri et al. CVPRW 2015
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Results

Object level deep feature pooling, Konda Reddy Mopuri et al. CVPRW 2015
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The side and additional info.

❖ Objectness

❖ Textual tags

❖ Strong supervision
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Images on web

❖ Surrounded by rich text → 

multi-modal nature

“five large white wind turbines are standing on a dark green slope 
connected by brown dirt roads”
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Extract additional semantics

❖ Traditional methods - BoW encoding

➢ Inefficient, Not semantic

❖ Cross modal/Joint learning - CCA, CorrNets, etc.

➢ Scaling issues

❖ Neural nets based language models

➢ Semantic and preserve regularities 

➢ Ex: Word2vec, glove, thought vectors, etc.
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Late fusion

Konda Reddy M et al., “Towards Semantic Visual Representation: Augmenting Image 
Representation with Natural Language Descriptors” (ICVGIP 2016) 

❖ Preprocess

➢ Noise and stop words removal, 

lemmatizing

❖ Encode and pool → representation from 

text

❖ Learn a classifier on top of the 

multi-modal representation
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Drawbacks

❖ Noisy tags

❖ Visual similarity vs learned semantics

➢ Ex: Cat and dog might have similar embeddings from text

❖ Minor improvements
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The side and additional info.

❖ Objectness

❖ Textual tags

❖ Strong supervision
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Labels are weak
❖ Current models are pretrained on 

objects/scenes

❖ Applications like retrieval require 

whole scene summary

❖ Labels → Not strong enough to 

summarize scene

Dataset train images

dog

fish

cup

Sample query image
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We need strong 
supervision
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Caption generators (FIC) & Dense region 
descriptors (DenseCap)

A man riding a wave on top of a surfboard
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Transfer learning from caption 
generators
❖ Exploit the features learned by the systems with strong 

supervision

❖ Transfer their learning for our target applications

❖ Perform learning on top with task specific constraints
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Transfer learning with task 
specific constraints

Modified siamese loss

Konda Reddy M et al., “Deep Image Representations using Caption generators” (ICME 2017) 
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Retrieval results
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Understanding the 
representations
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CNNs are black boxes ?

CNN

CAT
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Interpretability matters

❖ Lack of decomposability

❖ No transparency

➢ when they fail →  no warning, no explanation

❖ Suffer from the trade-off b/w “Accuracy” and 

“Interpretability”
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Additional information

❖ Reason an inference

❖ Visual explanations
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CNN Fixations
❖ Exploit the feature dependencies to locate the evidence

❖ Iteratively backtrack onto the image from the predicted label
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CNN-Fixations are useful
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Adversarial Images
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Images that fool CNNs

Shetland sheepdog Paintbrush
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Why do they exist ?
❖ Multiple hypotheses

➢ Linearity, low probability pockets in the feature space, 

sparse training data, etc.

❖ Multiple methods to generate them
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Current ways of handling it
❖ Adversarial training

❖ Each iteration → Train with Normal + Adversarial images

❖ Highly inefficient

➢ Compute adversarial images at each iteration
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Feature level augmentation
❖ Expand features in the embedding space

❖ Choose random adversarial directions

❖ Replace normal data with augmented data

➢ No extra computations

➢ No knowledge about the nature of attack
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The tradeoff
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Conclusions
❖ Deep learned image representations can be made more discriminative and 

useful

➢ Augment with task specific side information and additional semantic 

information

❖ Visualizing the predictions can help to develop more useful insights into the 

design and training of these complex ML systems.

❖ “Adversarial images” is an intriguing aspect of ML systems that demands 
rigorous study.
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