
  

  

        Codes with Locality for Multiple Erasures in 

Distributed Storage 
 

Disk failures are a challenge in distributed storage. Codes with locality can help reduce the number of disks accessed to 
repair a failed disk. In this poster we present bounds and code constructions for designing codes with locality primarily 
for correcting multiple erasures.  
 

               Codes with Locality 
 

C: Linear [n,k] code over Fq with locality r: 
     Example [7,4] code with locality r=2: 
 
 

Maximum Recoverability 

Maximum distance possible for a given block-length and dimension is achieved by 
codes called MDS codes.  In codes with locality, we have locality constraints. 
Maximum Recoverable codes are those codes which are as MDS as possible along 
with locality constraints. 

Idea : Take an existing construction of a code with locality and puncture or remove 
local codes one by one until it becomes maximum recoverable. 

Result: Given positive integers n, D with 
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There exists a [n,k=2D+1,r=2]  maximum recoverable code over Fq that is 

obtained from C by puncturing a certain specific  
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positions. 

Consider the code (due to Tamo, Barg): C : [n=q-1, k=2D+1, d=q-1-3D] which is 
obtained by evaluating a certain set of polynomials at cosets of cube roots of unity. 

An Upper Bound on Rate and a Rate-Optimal Construction for Codes with Locality and Sequential Recovery 

Codes with Locality and Sequential Recovery: 

An [n, k] code is said to be a locally recoverable code with sequential recovery from t erasures, if 
for any set of s ≤ t erasures, there is an s-step sequential recovery process, in which at each step, 
a single erased symbol is recovered by accessing at most r other code symbols which are either 
un-erased or already recovered. 

Rate Bound: Let C be an [n,k] code with locality r 
and sequential recovery from t erasures over a 
field Fq. Let  r≥3. Then: 
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𝑡+1

2
. This theorem settles a conjecture 

by Song, Cai and Yuen. 

Proof : 

First we observe that the parity check matrix without global 
parities can be written in the above form and then we observe 
that {Di} are diagonal matrices  as minimum distance is at least t+1 
and then we equate row and column weights of different parts of 
the above matrix H to get the required bound. 

Example rate optimal construction for t=4, r=3: 

Codes with Locality and strict Availability: 

Codes with strict availability: 
            Null space of an m x n matrix with each row of 
weight r+1 and each column of weight t with cardinality of 
intersection of support sets of any two rows at most one. 

Rate Bound on codes with strict availability and minimum distance bound on codes with availability 

Rate bound for t=3: 
  We formed and analyzed a greedy algorithm to 
calculate an upper bound on rate (shown in plot 
below).  

Rate bound using transpose trick : 
Take the example H matrix shown in strict 
availability definition for r=2,t=3.  If we take 
HT, it is also a valid parity check matrix of a 
strict availability code for r=2,t=3. Using this 
type of relation between H,HT  we get: 

Few of Other Results: 
• Bound on block length for t=2,3 for code with 

sequential recovery and almost block length 
optimal construction for t=3. 

• Characterization of rate-optimal code for t=2. 
• Low block length – rate optimal construction for 

r=2 for codes with sequential recovery. 
• Bound on minimum distance of a code with 

availability. 
• Construction of codes with partial maximal 

recoverability. 
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Example parity check 
matrix of a strict availability 
code for r=2,t=3 : 

X1,X2,Y1,Y2 (blue): Information symbols 
Px,Py (green): Local parities 

GP (yellow): Global parity 

Any  information symbol on erasure can be recovered 
by accessing at most 2 other code symbols 

Y1 

Local code 1 Local code 2 

Y2 

Py 

X1 X2 

Px 

GP 

Step by Step explanation of  rate optimal construction for t=4, r=3: 

Example rate optimal construction for t=2, r=2 
and need of girth and separation of deg 1 nodes: 
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Distributed storage

Data center: In date center, information
is stored in disks.

It is a challenge to repair a
disk when it fails.

Store redundant information
to repair a failed disk.

Disks helping in repair of a failed
disk by using redundant

information:
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Approaches to Local Multiple-Erasure Recovery

In this presentation we focus on only one of my work:
Focus on two approaches for local recovery from multiple erasures:

Sequential Recovery from t erasures.

Recovery from t erasures using availability (similar to parallel
recovery).
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Codes with Locality for Sequential Recovery

An example [8, 4] code for t=2, r=2:
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Codes with Locality for Sequential Recovery

Tanner graph:

Parity Check matrix (representing
equations satisfied by the code
symbols):

H =


1 0 0 0 1 0 1 0
0 1 0 0 1 1 0 0
0 0 1 0 0 1 0 1
0 0 0 1 0 0 1 1



Note that the parity check matrix is of the form H = [I |C ], where C has
column weight t = 2 and row weight r = 2.
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Codes with Locality for Sequential Recovery
Decoding using Peeling Decoder, sequentially from an example of 3
erasures:
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Codes with Locality for Sequential Recovery
Decoding using Peeling Decoder, sequentially from an example of 3
erasures:
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Codes with Locality for Sequential Recovery
Decoding using Peeling Decoder, sequentially from an example of 3
erasures:
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Codes with Locality for Sequential Recovery
Decoding using Peeling Decoder, sequentially from an example of 3
erasures:
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Codes with Locality for Sequential Recovery
Decoding using Peeling Decoder, sequentially from an example of 3
erasures:
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Codes with Locality for Sequential Recovery
Illustration of Sequential Recovery from 2 erasures :

c1 is first recovered using pairty check P3 and then c6 is recovered using
pairty check P1.
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Codes with Locality for Sequential Recovery
Type 1 error pattern: A minimal uncorrectable erasure pattern illustrating
the need for large distance between two degree one variable nodes.
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Codes with Locality for Sequential Recovery
Type 2 error pattern: A minimal uncorrectable erasure pattern illustrating
the need for large cycle length in the graph.
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Sequential Recovery Results

Achievable upper bound on rate R for any (r ≥ 3, t ≥ 2)

Matching binary-code construction.

The above results settles a conjecture by Song, Cai and Yuen.
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The (Tight) Upper Bound on Rate

Theorem

Rate Bound: Let C be an (n, k , r , t)seq code over a field Fq. Let r ≥ 3.
Then
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This theorem settles a conjecture by Song, Cai and Yuen who predicted
the achievable rate bound to be of the form below:
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ai ≥ 0, ai ∈ Z,
m∑
i=1

ai = t,

m = dlogr (k)e.
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Proof
(after some work, for t even, arrive at form below for
parity check matrix of the code)

H =



D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . A t
2
−2 0 0

0 0 0 0 . . . D t
2
−2 A t

2
−1 0

0 0 0 0 . . . 0 D t
2
−1

0 0 0 0 . . . 0 0 C


{Di} are diagonal and each row of {Ai} has Hamming weight ≤ r .
{C} has column weight 2.
Form equations by equating row weights and column weights of
various part of the matrix. These equations lead to the bound. 16 / 27



An example rate optimal construction for t=4

Parity check matrix of a rate-optimal code for t = 2:

H =
[
D0 C

]
We have already seen an example construction for t = 2 with parity
check matrix of the above form.

Parity check matrix of a rate-optimal code for t = 4:

H =

[
D0 A1 0
0 D1 C

]
We will now construct an example rate-optimal code for t = 4 with
parity check matrix in the above form.
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An example rate optimal construction for t=4: Step 1

We have constructed rate-opitmal codes for any r,t. Below we give a
simple rate-opimal construction for t = 4.

Below we depict a graph called Petersen graph (it has least number of
nodes with girth 5 and degree 3 (Moore graph)).

This is a representation of Tanner graph for t = 2, r = 3 (we did not
draw the variable node in the middle of edge to avoid clutter).

It has parity check matrix of the form H = [I10|C1], where C1 has
column weight t = 2 and row weight r = 3.
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An example rate optimal construction for t=4: Step 2

Take direct product of the code three times.

Now the resulting code has parity check matrix of the form:

H =

 I10 0 0 C1 0 0
0 I10 0 0 C1 0
0 0 I10 0 0 C1
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An example rate optimal construction for t=4: Step 3

Take a biregular bipartite graph with top node degree 3 and bottom node
degree 10 with girth atleast 4. Here we simply take a complete
(3,10)-biregular bipartite graph.
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An example rate optimal construction for t=4: Step 4
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An example rate optimal construction for t=4: Step 5

Split the bottom nodes in the bipartite graph into degree 1 nodes and
place it as shown below. Hence each bottom node is split into 10 nodes
and the number of nodes in a single petersen graph is also 10.
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An example rate optimal construction for t=4: Step 6

Merge the nodes as shown below (merging is indicated by dotted lines).
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An example rate optimal construction for t=4: Step 7
Attach degree 1 variable nodes to the top nodes of the graph.

The resulting graph has girth atleast 5 and any 2 degree 1 variable nodes
are separated sufficiently apart due to this tree (layer)-like construction
and parity check matrix is of the form given below:

H =


I10 A1 A2 A3 0 0 0
0 I10 0 0 C1 0 0
0 0 I10 0 0 C1 0
0 0 0 I10 0 0 C1
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Rate bound for t = 3
We derived a rate bound for t = 3 by providing and analyzing a greedy
algorithm. Below shows the plot of our bound in comparison with existing
bound due to Tamo, Barg and known achievable rate.
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Other Results

Bound on block length for t=2,3 for code with sequential recovery
and almost block length optimal construction for t=3.

Low block length rate optimal construction for r=2 for codes with
sequential recovery.

Bound on rate of code with availability.

Bound on minimum distance of a code with availability.

Construction of codes with maximum recoverability and partial
maximum recoverability.
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Thanks!
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