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Introduction
Originally conceived as a tool for statistical computation, stochastic approximation schemes to-

day find applications in varied fields of engineering, such as, adaptive signal processing, stochastic
optimization, game theory and machine learning to name a few. In control systems engineering
too, stochastic approximation is the main paradigm for on-line algorithms for system identification
and adaptive control. Stochastic approximation schemes are designed to operate in uncertain envi-
ronments and are iterative in nature which are the key traits that make them attractive for adaptive
schemes.

In our work we investigate the asymptotic behavior of stochastic approximation schemes where the
drift function is set-valued depending additionally on an iterate-dependent Markov noise term. Such
schemes arise for example, when one is trying to minimize a convex function which is an expectation
and is estimated via Markov chain Monte Carlo methods. We adopt the dynamical systems approach
to analyze the asymptotic behavior of such schemes. We consider two variants of the same, namely:

(1) Single time scale stochastic recursive inclusion (SRI) with Markov noise:

– Convergence analysis involves showing that the iterates track the flow of a differential inclusion
and then invoking the limit-set theorem to characterize the limit sets of the recursion in terms of
the dynamics of the differential inclusion.

– Applications include controlled stochastic approximation, subgradient descent, approximate drift
problem and analysis of discontinuous dynamics, all in the the presence of Markov noise.

(2) Two time scale SRI with Markov noise:

– Iterates are updated along a slower and faster timescale induced due to a clever choice of step
size regimes.

– Slower timescale iterates appear static w.r.t the faster timescale and faster timescale iterates ap-
pear to have equilibrated w.r.t. the slower timescale recursion.

– Applications include actor-critic algorithms in reinforcement learning and solving nested opti-
mization problems, for example: computation of saddle points.

In the analysis above, the iterates are assumed to lie in compact set which is sample path dependent.
This stability assumption is essential but is often hard to verify. We also consider the analysis of
standard SRI in the absence of a stability guarantee. Our contributions are:
• Extension of the lock-in probability bound to the case with set-valued maps.
•Using the lock-in probability result we show that a feedback mechanism which involves resetting

the iterates at regular time intervals, stabilizes the recursion when the mean field possesses a global
attractor.

Single timescale SRI with Markov noise [1]

•Recursion and assumptions: Given X0 ∈ Rd, S0 ∈ S , a compact metric space, Xn’s
are generated according to the recursion

Xn+1 −Xn − a(n)Mn+1 ∈ a(n)H(Xn, Sn), (1)

and, P(Sn+1 ∈ A|Xm, Sm,m ≤ n) = Π(Xn, Sn)(A), for every A ⊆ S measurable, where,
(A1)H : Rd × S → {subsets of Rd} such that H(x, s) is non-empty, convex and compact;

supz∈H(x,s) ‖z‖ ≤ K(1 + ‖x‖) and the set-valued map H , has a closed graph.

(A2) Π : Rd×S → P(S) is continuous, where P(S) denotes the metric space of probability measures
on S with the metric of weak convergence.

(A3) {a(n)}n≥0 is the step size sequence satisfying the standard Robbins-Munro conditions.
(A4) {Mn}n≥1 denotes the additive noise terms satisfying a condition which ensures that their even-

tual contribution is negligible over any time interval.
(A5) The iterates remain stable, i.e., P(supn≥0 ‖Xn‖ <∞) = 1.

•Mean field and its properties: As a consequence of (A2) and the compactness of S,
the Markov chain with transition probability kernel Π(x, ·)(·) admits at least one stationary distri-
bution for every x. Let D(x) denote the set of stationary distributions for every x. The differential
inclusion (DI) whose flow the iterates generated as in recursion (1) are expected track is given by,

dx

dt
∈ Ĥ(x) := ∪µ∈D(x)

∫
S
H(x, s)µ(ds), (2)

– The set-valued map H(x, ·) is a measurable set-valued map. For measurable set-valued maps
there exists a measurable selection, i.e., h : S → Rd s.t., h(s) ∈ H(x, s) for every s ∈ S.

– As a consequence of (A1), we have that for every µ ∈ D(x), every measurable selection is inte-
grable and the set valued integral is defined as the collection of the integrals of all the measurable
selections (a.k.a. Aumann’s integral).

– Further we show that the set-valued map Ĥ , is of the Marchaud type, which guarantees the
existence of solutions for DI (2).

•Convergence guarantee: Given that there exists A ⊆ Rd, a global attractor for the flow
of DI (2), then the iterates Xn as in recursion (1) converge to A almost surely.
– A global attractor is set to which all the solutions of DI (2) converge to from any initial condition.
– The main component of the proof of the above convergence result is an asymptotic pseudotrajec-

tory argument, which involves showing that every limit point the tail of the linearly interpolated
trajectory is a solution of DI (2).

•Application: Let µ ∈ P(S) and Jµ : Rd → R, such that Jµ(x) :=
∫
S J(x, s)µ(ds), where

for every s ∈ S, J(·, s) is convex. Let Π be as in (A2) s.t., D(x) = {µ}. Then iterates in recursion
(1) with H(x, s) := −∂J(x, s) := {−g : ∀y, J(y, s) ≥ J(x, s) + 〈g, y − x〉}, track the flow of DI
(2). The set-valued map Ĥ satisfies the inclusion, Ĥ(x) ⊆ −∂Jµ(x). Hence a global attractor of
DI, dxdt ∈ −∂Jµ(x), is also a global attractor of DI (2) and our convergence result guarantees that
the iterates converge to set of points {x∗ : 0 ∈ ∂Jµ(x∗)}.

Two timescale SRI with Markov noise [2]
•Recursion and assumptions: Given X0 ∈ Rd1, Y0 ∈ Rd2, and for every i ∈
{1, 2}, S(i)

0 ∈ S(i), a compact metric space, Xn, Yn are generated according to the recursion,

Yn+1 − Yn − b(n)M
(2)
n+1 ∈ b(n)H2(Xn, Yn, S

(2)
n ), (3a)

Xn+1 −Xn − a(n)M
(1)
n+1 ∈ a(n)H1(Xn, Yn, S

(1)
n ), (3b)

and for every i ∈ {1, 2}, P(S
(i)
n+1 ∈ A|Xm, Ym, S

(i)
m ,m ≤ n) = Π(i)(Xn, Yn, S

(i)
n )(A), for every

A ⊆ S(i) measurable, where,

(B1) for every i ∈ {1, 2}, Hi : Rd1+d2×S(i)→ {subsets of Rdi} such that H(x, y, s(i)) is non-empty,
convex and compact; supz∈Hi(x,y,s(i))

‖z‖ ≤ K(1 + ‖x‖ + ‖y‖) and the set-valued map Hi, has
a closed graph.

(B2) for every i ∈ {1, 2}, Π(i) : Rd1+d2 × S(i)→ P(S(i)) is continuous.

(B3) {a(n)}n≥0 and {b(n)}n≥0 are step size sequences satisfying limn→∞
b(n)
a(n)

= 0, in addition to the
standard Robbins-Munro conditions.

(B4) for every i ∈ {1, 2}, {M (i)
n }n≥1 denotes the additive noise terms satisfying a condition which

ensures that their eventual contribution is negligible over any time interval.
(B5) the iterates remain stable, i.e., P

(
supn≥0 (‖Xn‖ + ‖Yn‖) <∞

)
= 1.

•Overview of the analysis:
– Assumption (B3) tells that eventually the time step taken by recursion (3a) is smaller than the

time step taken by recursion (3b). Hence recursion (3a) is called the slower timescale recursion
and the recursion (3b) is called the faster timescale recursion.

– With respect to the faster timescale (3b), the slower timescale recursion (3a) appears to be static
and one would expect that the family of DIs,

dx

dt
∈ Ĥ1(x, y0) := ∪µ∈D(1)(x,y0)

∫
S(1)

H1(x, y0, s
(1))µ(ds(1)), (4)

obtained by fixing some y0 ∈ Rd2 to describe the behavior of the faster timescale recursion (3b).
(B6) For every y ∈ Rd2, let λ(y) denote the global attractor of DI (4) with y0 = y. We assume that the

set-valued map, y → λ(y) is upper semicontinuous and possesses the linear growth property.
– With respect to the slower timescale recursion (3a), the faster time scale recursion will appear to

have equilibrated. Further the Markov noise terms average the set-valued drift function H2 with
respect to the stationary distributions. The set-valued map that the slower timescale recursion is
expected to track which captures both the equilibration of the faster timescale and the averaging
by the Markov noise terms, is given by,

dy

dt
∈ Ĥ2(y) := ∪µ∈D(y)

∫
Rd1×S(2)

H2(x, y, s(2))µ(dx, ds(2)),where, (5)

D(y) :=

{
µ∈P(Rd1 × S(2)) : supp(µRd1)⊆λ(y) and for every A∈B(S(2)),

µS(2)(A)=

∫
S(2)

Π(2)(x, y, s(2))(A)µ(dx, ds(2))

}
. (6)

•Convergence guarantee: If Y ⊆ Rd2 is a global attractor of the flow of DI (5), then the
iterates (Xn, Yn) converge to ∪y∈Y (λ(y)× {y}) almost surely as n→∞.

Analysis of SRI in the absence of a stability guarantee [3]

•Recursion and assumptions: Given X0 ∈ Rd, Xn’s are generated according to the
recursion,

Xn+1 −Xn − a(n)Mn+1 ∈ a(n)H(Xn), where, (7)

(C1)H : Rd→
{

subsets of Rd
}

is a Marchaud map.

(C2) {a(n)}n≥0 is the step size sequence satisfying the standard Robbins-Munro conditions.
(C3) {Mn}n≥1 is an Rd-valued, martingale difference sequence with respect to the filtration {Fn :=

σ(Xm,Mm, m ≤ n)}. Furthermore, {Mn}n≥1 are such that, ‖Mn+1‖ ≤ K(1 + ‖xn‖) a.s., for
every n ≥ 0, for some constant K > 0.

•Lock-in probability bound: We prove that in the absence of stability, there exists
K̃ > 0, such that for large enough n0 ∈ N, the probability of converging to a attractor A, given that
at iteration n0 we observe the iterate in O′ ⊆ Rd, a precompact neighborhood of the attractor, is
lower bounded by 1−2de−K̃/b(n0), where {b(n)} is a positive sequence of real numbers converging
to zero. Formally,

P(Xn→ A as n→∞|Xn0 ∈ O
′) ≥ 1− 2de−K̃/b(n0).

•Applications: We use the above bound to obtain alternate condition for convergence to a
local attractor in the absence of stability. Further we develop a stabilization mechanism involving
resetting the iterates at regular time intervals which stabilizes the scheme when the mean field pos-
sess a global attractor. The key idea involves lower bounding the probability of having no future
resets given that n0 number of resets have occurred by 1− 2de−K̃/b(n0).
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Introduction

• Borkar1 analyzed the iterative scheme of the form

Xn+1 − Xn − a(n)Mn+1 = a(n)h(Xn,Sn),

where, a(n) is the step size, Mn+1 is the martingale noise, h is
the drift function and Sn is the Markov noise with Sn ∈ S, a
compact metric space.

• P(Sn+1 ∈ A|Sm,Xm,m ≤ n) = Π(Sn,Xn)(A); where
Π : Rd × S → P(S) assumed to be continuous;

• Markov chain with TPK Π(·, x)(·) admits at least one stationary
distribution for every x ; D(x).

1Vivek S Borkar. “Stochastic approximation with controlled Markov noise”.
In: Systems & control letters 55.2 (2006), pp. 139–145.
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• Under the additional assumption of stability
(supn≥0 ‖Xn‖ <∞), iterates track the flow of the differential
inclusion (DI),

dx
dt
∈ ĥ(x), (1)

where ĥ(x) := ∪µ∈D(x)
∫
S h(x , s)µ(ds).

• Convergence guarantee: If x∗ ∈ Rd is globally
asymptotically stable for DI (1), then Xn → x∗, a.s.
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Set-valued drift function: Motivating cases

• Controlled stochastic approximation

Xn+1 − Xn − a(n)Mn+1 = a(n)h(Xn,Sn,Un), (2)

where Un is the control variable taking value in a compact
metric space U .
Recursion (2) can be equivalently written as,

Xn+1 − Xn − a(n)Mn+1 ∈ a(n)H(Xn,Sn),

where, H(x , s) := conv ({h(Xn,Sn,u) : u ∈ U}).

3



• Subgradient descent:
• Assume that for every x , D(x) = µ ∈ P(S).
• Let J : Rd × S → R s.t., J(·, s) is convex.
• Consider the recursion given by,

Xn+1 − Xn − a(n)Mn+1 ∈ −a(n)∂J(Xn,Sn),

where,
∂J(x , s) := {g : J(y , s) ≥ J(x , s) + 〈g, y − x〉, for every y}.

• Does the above recursion minimize the convex function
x →

∫
S J(x , s)µ(ds)?

4



Stochastic recursive inclusions (SRI) with Markov noise2

• We analyze the recursion given by,

Xn+1 − Xn − a(n)Mn+1 ∈ a(n)H(Xn,Sn), (3)

where, H : Rd × S → {subsets of Rd} is such that, H(x , s)

is non-empty, convex and compact; H is upper
semicontinuous and ‖H(x , s)‖ ≤ K (1 + ‖x‖).

2Vinayaka Yaji and Shalabh Bhatnagar. “Stochastic Recursive Inclusions
with Non-Additive Iterate-Dependent Markov Noise”. In: arXiv preprint
arXiv:1607.04735 (2016).
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• Conversion to the single-valued case:

H(x , s) ⊆ H(l)(x , s)︸ ︷︷ ︸
continuous,

∩l≥1H(l)(x ,s)=H(x ,s)

→ h(l)(x , s,u)︸ ︷︷ ︸
{h(l)(x ,s,u):‖u‖≤1}=H(l)(x ,s)

Using the above, recursion (3) is written as,

Xn+1 − Xn − a(n)Mn+1 = a(n)h(l)(Xn,Sn,Un).

• Identifying the limiting trajectory

x∗(t) =

∫ t

0

[∫
S×U

h(l)(x , s,u)γ(l)(t ; ds,du)

]
dt ,

where, γ(l) : [0,∞)→ P(S × U) and for every t ≥ 0,
γ
(l)
S (t) ∈ D(x(t)).

6



• The iterates Xn track the flow of the DI3,

dx
dt
∈ Ĥ(x) := ∪µ∈D(x)

∫
S

H(x , s)µ(ds). (4)

• Convergence guarantee: If x∗ is a global attractor of DI
(4), then Xn → x∗ a.s.

3Shoumei Li, Yukio Ogura, and Vladik Kreinovich. Limit theorems and
applications of set-valued and fuzzy set-valued random variables. Vol. 43.
Springer Science & Business Media, 2013.
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Two timescale SRI with Markov noise4

• We analyze the recursion given by,

Yn+1 − Yn − b(n)M(2)
n+1 ∈ b(n)H2(Xn,Yn,S

(2)
n ), (5a)

Xn+1 − Xn − a(n)M(1)
n+1 ∈ a(n)H1(Xn,Yn,S

(1)
n ), (5b)

where a(n),b(n) are step-sizes satisfying limn→∞
b(n)
a(n) = 0.

• (5a) will appear to be static w.r.t. (5b).

• (5b) will appear to have equilibrated w.r.t (5a).

4Vinayaka Yaji and Shalabh Bhatnagar. “Stochastic Recursive Inclusions in
two timescales with non-additive iterate dependent Markov noise”. In: CoRR
abs/1611.05961 (2016).
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• λ(y) denotes the globally attracting set for the flow of DI,

dx
dt
∈ Ĥ1(x , y)

where, Ĥ1(x , y) = ∪µ∈D(1)(x,y)
∫
S(1) H1,(x,y)(s(1))µ(ds(1)).

• Y denotes the globally attracting set for the flow of DI,

dx
dt
∈ Ĥ2(y),

where Ĥ2(y) := ∪µ∈D(y)
∫
Rd1×S(2) H2,y (x , s(2))µ(dx ,ds(2)), with

D(y) :=

{
µ∈P(Rd1 × S(2)) :supp(µRd1 )⊆λ(y),

µS(2)(A)=

∫
S(2)

Π(2)(x , y , s(2))(A)µ(dx ,ds(2))

}
• Convergence guarantee: Under stability,

(Xn,Yn)→ ∪y∈Y(λ(y)× {y}) a.s.

9



Analysis in the absence of a stability guarantee5

• We consider the recursion given by,

Xn+1 − Xn − a(n)Mn+1 ∈ a(n)H(Xn)

• In the absence of a stability guarantee, we show that,

P(Xn → A as n→∞|Xn0 ∈ O′) ≥ 1− 2de−K̃/b(n0)

where A is local attractor, O′ is precompact neighborhood of A
and b(n0)→ 0 as n0 →∞.

• Using the above we design a feedback mechanism, which
stabilizes the scheme in the presence of a global attractor, thus
guaranteeing convergence.

5Vinayaka G. Yaji and Shalabh Bhatnagar. “Analysis of stochastic
approximation schemes with set-valued maps in the absence of a stability
guarantee and their stabilization”. In: CoRR abs/1701.07590 (2017).
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Questions ?
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