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Problem statement

@ Consider samples of a signal s,, distorted by additive random noise
w,. The observation model is given by:

Xn = Sp + Wj. n=12--.

@ Goal: To estimate s, from x,, by minimizing a suitable distortion
metric.



Risk estimation

o Conventional method : Obtain an estimate of s by minimizing the
distortion function (risk) between estimate § = h(x) and s,

where d measure the closeness between h(x) and s.

@ Direct minimization of cost requires the knowledge of underlying
clean signal.

@ Risk Estimation : Minimize an unbiased estimate of R to obtain s.



Basic SURE formulation

o Consider MSE

R = E{d(h(x),s)} = € {(h(x) -5’}
=£{?} — 26 {h(x)s} + & {h(x)2} .

where x ~ N (s, 0?).
@ SURE is an unbiased estimate of MSE obtained using Stein’s lemma.
(Stein, 1981)
Let Y be a real random variable A'(0,02) and let h: R — R be an
indefinite integral of the Lebesgue measurable function #’, essentially
the derivative of h. Suppose also that Ey {|(Y)|} < co. Then

Ev (Yh(Y)} = ?Ey {H(Y)}



Risk estimation SURE

SURE

Using Stein's lemma: € {h(x)s} = £ {h(x)x} — o2E {H (x)}.

Unbiased estimate of R becomes

R = 52 — 2h(x) x + 20%H (x) + h(x)?

i.e. R = &[R]. Minimize R to obtain h(x).
@ Clean speech DCT coefficient estimate, h(xx) = axxk, where
ak € [0,1] and x is noisy DCT coefficient.

N

Optimum pointwise shrinkage parameter a opr = arg min,, R

2

A opt = [1 — iz] where  [x]+ = max(0, x).
k4 +



Perceptual risk estimation

@ Perceptual distortion functions: Itakura-Saito distortion,
hyperbolic-cosine (cosh) distortion, weighted cosh distortion, etc. [2].

@ Practical noise types are bounded, hence one can model the noise
using a truncated Gaussian distribution.

@ Assuming observation distribution is truncated gaussian and SNR is
high, we propose risk estimate for perceptual distortion functions.

@ Minimize perceptual risk estimates to obtain optimum shrinkage
estimators.



Itakura Saito(IS) Distortion

o Ris =& {d/s(5k7§k)‘fwk\ < \Xk|} where

dis(sk, 8k) = 2k _log <5k> -1

Sk Sk
A 1
S, w,
- (1 - k) log (8) + log (5¢) — 1
X X

@ Truncating the series beyond n=4 using §x = axxx yields

Ris ~ 25 ( E) — & {log (akxx)} + log (sk) — 1.
Xk



Perceptual Risk Optimization for Speech Enhancement Perceptual Risk Estimation

Lemma 1

Let W be a real random variable with p.d.f
1 w?
p(w;ci,c,0) = m exp 252 L cocw<col

Qo 2
where K= \ﬁa /_;Je p< = )du and let ¥ : R — R be an n-fold
indefinite integral of the Lebesgue measurable function ("), which is the
nth derivative of f. Suppose also that & {| W=k f(D(W)|} < o0,
c10, o >> o, and f(K) (W) belongs to a class of functions such that
— 2O )p(wier, 0,0) | ~0,k=1,2,---,n. Then

—cio

E{Wf (W)} = a?E{F (W)W 1} + 0%(n — 1)EL{F (W) W2},



Perceptual Risk Optimization for Speech Enhancement Perceptual Risk Estimation

@ Using Lemma 1, the risk Rys is

6 8
Rzs =€ {ak (1 + 6O(L6 + 84008> - /og(akxk)} — log(sk) — 1.
Xk Xk

@ The unbiased estimate of Rzs is

o6 o8
Rzs = ak (1 +607 5+ 8407 ) — log(axxx) — log(sk) — 1.
X} X3
o Differentiating Rzs with respect to a, and equating to zero, we get
that
; [1 490 60 n 840] B
k,opt — 4
a &g &

2

X

where &, = —';
o



Perceptual Risk Optimization for Speech Enhancement Optimum shrinkage parameter

Table: Optimal shrinkage parameters for different perceptual risk estimates.
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rceptual Risk Optimization for Speech Enhancement Performance Evaluation
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Figure: Performance comparison of different denoising algorithms.



Conclusion

@ Introduced the notion of risk estimation for single-channel speech
enhancement.

@ We proposed risk estimates for perceptual distortion metrics and minimize to
obtain the optimum denoising function.

@ For SNR greater than 5 dB, the proposed approach resulted in better
denoising performance than the benchmarking techniques.
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