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Objective

Given a training set that comprises image and image-level labels only,
infer the pixel-level labels of a test set that contains only images.

Other problems addressed during PhD
Generative Models
•Hierarchical completely random measures for topic modelling (ICML-16)
•A variational approach to deep conditional generative modelling (IJCNN-17)

Discriminative Models
•Deep neural networks of infinite width (ICML-14)
• Continuous learning with deep nonparametric neural networks (under progress)
•Discriminative Bayesian clustering (under progress)
• Latent conditional random fields for semantic segmentation (under submission)

The proposed model
1. We treat the pixel-level labels as the latent features of a CRF.
2. The pixels and the image-level label are the observed features.

Figure 1: The latent CRF

3. P (z|x) ∝ exp(−
∑
j<i k(xi,xj)µ(zi, zj))

4. Enforces neighboring pixels with similar color to also have the same label (local consistency con-
straint).

5. The aim is to maximize P (y|x).

P (y|x) =
∑
z

P (y|z)P (z|x)

6. Computation of P (y|x) is intractable.
7. Hence, we maximize its lower bound.

Variational lower bound
1. We chose a variational distribution q(z|x,y), and obtain a lower bound on the log-likelihood.

log p(y|x) ≥ −KL(q(z|y,x)||p(z|x)) + Eq(z|x,y) log p(y|z,x)

2. In this work, we assume that the variational distribution q factorizes completely, that is

q(z|x,y) =
m∏
j=1

q(zj|y,x) (1)

3. Moreover,

q(zjk = 1|x,y) =
exp(gjk(x))∑K
k′=1 exp(gjk′(x))

≡ ϕjk(x) , (2)

where g is a fully convolutional neural network and {gjk(x), 1 ≤ j ≤ m, 1 ≤ k ≤ K}, are the
outputs of g, when x is fed as input.

Figure 2: Inference network

4. The KL-divergence term forces the variational distribution to be close to the prior.
5. This ensures that the output of q(z|x,y) also respects local consistency.
6. The second term ensures that pixel-level labels are consistent with the global labels.

Gradient of the lower bound
1. The first term is the KL-divergence loss on the output of CNN g, whose gradient can be computed

exactly.

2. The gradient of the second term is approximated using reparametrization.

3. The multinomial distribution q is approximated by its continuous relaxation, the Gumbel-softmax
distribution.

4. Next, samples from the Gumbel-softmax approximation are generated and fed to the classification
network.

5. The gradient of log p(y|x, z) is computed with respect to the relaxed sample and backpropagated.

Figure 3: Implementation of the proposed model

6. Note that log p(y|z,x) contains no trainable parameters.

Qualitative Results on VOC 2012 dataset
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Table 1: Segmentation masks predicted by the model

Quantitative Results on VOC 2012 dataset
Saliency maps localize the important regions of an image, and can drastically improve performance.

1. Approaches that don’t use saliency maps: (a) MIL+ILP (b) EM-Adapt (c) CCNN
2. Approaches that use saliency maps: (a) SEC (b) STC
3. Intersection over Union of predicted segmentation masks is given by:

IoU =
true positive

true positive + false positive + false negative

class MIL+ILP EM-Adapt CCNN SEC STC Ours

background 77.2 67.2 68.5 82.4 84.5 84.75
aeroplane 37.3 29.2 25.5 62.9 68.0 72.36
bike 18.4 17.6 17.0 26.4 19.5 25.2
bird 25.4 28.6 25.4 61.6 60.5 64.1
boat 28.2 22.2 20.2 27.6 42.5 29.6
bottle 31.9 29.6 26.3 38.1 44.8 53.6
bus 41.6 47.0 46.8 66.6 68.4 53.1
car 48.1 44.0 47.1 62.7 64.0 62.9
cat 50.7 44.2 48.0 75.2 64.8 70.5
tvmonitor 35.0 31.6 36.9 45.3 31.2 51.6
mean 36.6 33.8 35.3 50.7 49.8 50.4

Table 2: IoU of predicted segmentation masks

Conclusions
1. This is the only work that uses a CNN as inference networks in a CRF for semantic segmentation.

2. The proposed model drastically outperforms all methods that don’t use saliency maps.

3. The proposed model achieves performance comparable with other methods that use saliency maps.

4. The proposed models suggests that traditional probabilistic models, when combined with deep
networks can achieve drastically improved performance.
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Objective

Weakly Supervised Semantic Segmentation

Given a training set that comprises image and image-level labels
only, infer the pixel-level labels of a test set that contains only
images.
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Model

I We treat the pixel-level labels as the latent features of a
conditional random �eld.

I The pixels and the image-level label are the observed
features.
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Conditional Random Field

I Prior: P (z|x) ∝ exp(−
∑

j<i k(xi,xj)µ(zi, zj))

I Enforces neighboring pixels with similar color to also have
the same label (local consistency constraint).

I The aim is to maximize P (y|x).

P (y|x) =
∑
z

P (y|z)P (z|x)

I Computation of P (y|x) is intractable.
I Hence, we maximize its lower bound.
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Variational Lower Bound

I We chose a variational distribution q(z|x,y), and obtain a
lower bound on the log-likelihood.

log p(y|x) ≥ −KL(q(z|y,x)||p(z|x)) + Eq(z|x,y) log p(y|z,x)

I We assume that the variational distribution q factorizes
completely, that is

q(z|x,y) =
m∏
j=1

q(zj |y,x) (1)

I Moreover,

q(zjk = 1|x,y) =
exp(gjk(x))∑K

k′=1 exp(gjk′(x))
(2)

where g is a fully convolutional neural network.
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Variational Lower Bound

I The distribution q(z|x,y) is parametrized by a CNN.
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Variational Lower Bound

I The KL-divergence term forces the variational distribution
to be close to the prior.

I This ensures that the output of q(z|x,y) also respects local
consistency.

I The second term ensures that pixel-level labels are
consistent with the global labels.
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Gradient of the Lower Bound

I The �rst term is the KL-divergence loss on the output of
CNN g.

I The gradient of this loss can be computed exactly.

I The gradient of the second term is approximated using
MCMC samples.
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Qualitative results on VOC 2012 1 dataset

Table: Examples of predicted segmentation masks. The middle row
is the ground truth.

1[Everingham et al., ]
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Compared methods

Saliency maps localize the important regions of an image, and
can drastically improve performance.

I Approaches that don't use saliency maps:
I MIL+ILP [Pinheiro and Collobert, 2015]
I EM-Adapt [Papandreou et al., 2015]
I CCNN [Pathak et al., 2015]

I Approaches that use saliency maps:
I SEC [Kolesnikov and Lampert, 2016]
I STC [Wei et al., 2016]

Gaurav Pandey Amortized Inference
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Evaluation metric

I For each pixel, the class label is predicted.

I For each class, intersection over union (IoU) score is
calculated as:

true positive

true positive+ false positive+ false negative

I The mean IoU is simply the average over all the classes.
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Quantitative results on VOC 2012 dataset
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background 77.2 67.2 68.5 82.4 84.5 84.75

aeroplane 37.3 29.2 25.5 62.9 68.0 72.36

bike 18.4 17.6 17.0 26.4 19.5 25.2
bird 25.4 28.6 25.4 61.6 60.5 64.1

boat 28.2 22.2 20.2 27.6 42.5 29.6
bottle 31.9 29.6 26.3 38.1 44.8 53.6

bus 41.6 47.0 46.8 66.6 68.4 53.1
car 48.1 44.0 47.1 62.7 64.0 62.9

mean 36.6 33.8 35.3 50.7 49.8 50.4

Table: Results on PASCAL VOC 2012 (IoU in %) val set.
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Conclusions

I The �rst work that uses a CNN as inference networks in a
CRF for semantic segmentation.

I The proposed model drastically outperforms all methods
that don't use saliency maps.

I The proposed model achieves performance comparable with
other methods that use saliency maps.

I The proposed models suggests that traditional probabilistic
models, when combined with deep networks can achieve
drastically improved performance.
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