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SUMMARY

• Robust learning of classifiers in presence of Label Noise.

• Under risk minimization (RM) framework, we prove sufficient conditions on a loss function for robust
classifier learning.

• Theoretical results are illustrated with learning of Deep Neural Networks under label noise.

• A new loss is proposed for efficient learning of Deep Neural Networks under label noise.

PROBLEM DEFINITION

• We denote X ⊂ Rd as the feature space of samples and Y = [k] = {1, · · · , k} as class labels.

• S = {(x1, yx1), . . . , (xN , yxN )} ∈ (X × Y)N is a noise free training dataset, drawn iid according to an
unknown distribution, D, over X × Y .

• A classifier: h(x) = pred ◦ f(x) where h : X → Y , f : X → C, C ⊆ Rk.
(f itself is also referred to as the classifier.)

• The objective is to learn a classifier, f , which is a global minimizer of risk, RL.

f∗ = arg min
f

RL(f) = arg min
f

ED[L(f(x), yx)] (1)

where L : C × Y → R+ is a loss function and E denotes expectation.

• Sη = {(xn, ŷxn), n = 1, · · · , N} is noisy training data available to the learner under noisy settings where,

ŷxn =

{
yxn with probability (1− ηxn)

j, j ∈ [k], j 6= yxn with probability η̄xnj

and for all x, conditioned on yx = i, with
∑
j 6=i η̄xj = ηx.

• L-risk of a classifier f under noisy setting is

RηL(f) = EDη [L(f(x), ŷx)]

where Dη is the joint distribution of x, ŷx. Let f∗η be the global minimizer of RηL(f).

• RM under loss function L, is said to be noise-tolerant if

PrD[pred ◦ f∗(x) = yx] = PrD[pred ◦ f∗η (x) = yx]

TYPES OF LABEL NOISE

• symmetric or uniform if ηx = η, and
η̄xj = η

k−1
, ∀j 6= yx,∀x, where η is a constant.

• class-conditional or asymmetric if ηx = ηyx ,
and η̄xj = η̄yx,j .

• non-uniform if ηx, η̄xj are functions of x and
simple non-uniform noise if η̄xj = ηx

k−1
, ∀j 6= yx.

LOSSES

• Categorical Cross Entropy (CCE)

• Mean Square Error (MSE)

• Mean Absolute Error (MAE)

• Robust Log Loss (RLL)

∗∗Deep Networks with softmax layer as the last layer,
outputs a probability vector u for any x (i.e. f(x) =
u). The final classifier would be h(x) = q, where q =
arg max ur

r∈[k]
The loss functions are now defined in terms of u as

L(u, ej) =



∑k
i=1 eji log 1

ui
= log 1

uj
CCE

||ej − u||1 = 2− 2uj MAE
||ej − u||22 = ||u||22 + 1− 2uj MSE
log2− ejj log(1 + ui)+∑k

i=1
i 6=j

ejj
k−1

log(1 + ui) RLL

For these loss functions, we have

k∑
i=1

L(u, ei) =


∑k
i=1 log 1

ui
CCE∑k

i=1(2− 2ui) = 2k − 2 MAE
k||u||22 + k − 2 MSE
klog2 RLL

MAE, RLL satisfies our symmetry condition.

RESULTS

Data loss η = 0% η = 30% η = 60% CC

MNIST

CCE 0.9935 0.8955 0.5845 0.5776
MAE 0.9924 0.9900 0.9788 0.9313
MSE 0.9921 0.9868 0.9766 0.8505
RLL 0.9934 0.9896 0.9639 0.9455

RCV1

CCE 0.9078 0.7630 0.5321 0.4920
MAE 0.8627 0.8431 0.8401 0.8269
MSE 0.9014 0.8743 0.8382 0.8015
RLL 0.8876 0.8592 0.8254 0.8141

Imdb

CCE 0.8645 0.72316 0.6268 0.7858
MAE 0.8520 0.8088 0.7174 0.8282
MSE 0.8616 0.7725 0.6506 0.7874
RLL 0.8648 0.8020 0.7010 0.8348

News
group

CCE 0.7913 0.6918 0.4953 0.3771
MAE 0.8048 0.7742 0.6665 0.5547
MSE 0.7999 0.7553 0.6347 0.5519
RLL 0.7929 0.7796 0.6990 0.6019

Table 1: Accuracies under different noise rates (η) for
all datasets (for Imdb, η’s are halved). The last col-
umn gives accuracies under class conditional noise.

THEOREMS

• Def: A loss function L is said to be symmetric if it satisfies, for some constant C,

k∑
i=1

L(f(x), i) = C, ∀x ∈ X , ∀f. (2)

Theorem 1 In a multi-class classification problem, let loss function L satisfy Eq 2. Then L is noise tolerant under
symmetric or uniform label noise if η < k−1

k
.

Theorem 2 Suppose loss L satisfies Eq 2. If RL(f∗) = 0, then L is also noise tolerant under simple non uniform
noise when ηx < k−1

k
, ∀x. If RL(f∗) = ρ > 0 then, under simple non-uniform noise, RL(f∗η ) is upper bounded by

ρ/(1− kηmax
k−1

), where ηmax is maximum noise rate over x ∈ X .

Theorem 3 Suppose L satisfies Eq 2 and 0 ≤ L(f(x), i) ≤ C/(k − 1), ∀i ∈ [k]. If RL(f∗) = 0, then, L is noise
tolerant under class conditional noise when η̄ij < (1− ηi), ∀j 6= i, ∀i, j ∈ [k].

RESULTS
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Figure 1: Train-Test Accuracies for CCE and MAE over epochs, for RCV1 Datasets under noise-rate (a) 0% (b) 40% (c) 80% (d) CC and MNIST
Datasets under noise-rate (e) 0% (f) 40% (g) 80% (h) CC. Legends are shown in (i). (a), (e) also shows comparison between learning rate of RLL
and MAE.

CONCLUSION

• RM with symmetric losses has interesting ro-
bustness properties.

• ERM is shown to be consistent under uniform
noise.

• Results with MAE, RLL show robustness un-
der uniform and class conditional noise (with
diagonally dominant noise matrix).

• RL(f∗) = 0 for robustness under non-uniform
noise is very restrictive.

• Learning with RLL is faster compared to MAE
but slower compared to CCE. Further work on
optimization algorithms for fast learning is re-
quired.
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