

Robust Loss Functions under Multi-class Label Noise for Deep Neural Networks

Himanshu Kumar, P. S. Sastry {himanshukr, sastry}@ee.iisc.ernet.in

SUMMARY

- Robust learning of classifiers in presence of Label Noise.
- Under risk minimization (RM) framework, we prove sufficient conditions on a loss function for robust classifier learning.
- Theoretical results are illustrated with learning of Deep Neural Networks under label noise.
- A new loss is proposed for efficient learning of Deep Neural Networks under label noise.

PROBLEM DEFINITION

- We denote $\mathcal{X} \subset \mathbb{R}^d$ as the feature space of samples and $\mathcal{Y} = [k] = \{1, \dots, k\}$ as class labels.
- $S = \{(\mathbf{x}_1, y_{\mathbf{x}_1}), \dots, (\mathbf{x}_N, y_{\mathbf{x}_N})\} \in (\mathcal{X} \times \mathcal{Y})^N$ is a noise free training dataset, drawn *iid* according to an unknown distribution, \mathcal{D} , over $\mathcal{X} \times \mathcal{Y}$.

TYPES OF LABEL NOISE

- symmetric or uniform if $\eta_{\mathbf{x}} = \eta$, and $\bar{\eta}_{\mathbf{x}j} = \frac{\eta}{k-1}, \ \forall j \neq y_{\mathbf{x}}, \forall \mathbf{x}, \text{ where } \eta \text{ is a constant.}$
- class-conditional or asymmetric if $\eta_{\mathbf{x}} = \eta_{y_{\mathbf{x}}}$, and $\bar{\eta}_{\mathbf{x}j} = \bar{\eta}_{y_{\mathbf{x}},j}$.
- non-uniform if $\eta_{\mathbf{x}}$, $\overline{\eta}_{\mathbf{x}j}$ are functions of \mathbf{x} and simple non-uniform noise if $\bar{\eta}_{\mathbf{x}j} = \frac{\eta_{\mathbf{x}}}{k-1}, \ \forall j \neq y_{\mathbf{x}}.$

LOSSES

(1)

- Categorical Cross Entropy (CCE)
- Mean Square Error (MSE)
- Mean Absolute Error (MAE)

- A classifier: $h(\mathbf{x}) = \text{pred} \circ f(\mathbf{x})$ where $h : \mathcal{X} \to \mathcal{Y}, f : \mathcal{X} \to \mathcal{C}, \mathcal{C} \subseteq \mathbb{R}^k$. (*f* itself is also referred to as the classifier.)
- The objective is to learn a classifier, f, which is a global minimizer of risk, R_L .

 $f^* = \underset{f}{\operatorname{arg\,min}} R_L(f) = \underset{f}{\operatorname{arg\,min}} \mathbb{E}_{\mathcal{D}}[L(f(\mathbf{x}), y_{\mathbf{x}})]$

where $L : \mathcal{C} \times \mathcal{Y} \to \mathbb{R}^+$ is a loss function and \mathbb{E} denotes expectation.

• $S_{\eta} = \{(\mathbf{x}_n, \hat{y}_{\mathbf{x}_n}), n = 1, \dots, N\}$ is noisy training data available to the learner under noisy settings where,

 $\hat{y}_{\mathbf{x}_n} = \begin{cases} y_{\mathbf{x}_n} & \text{with probability } (1 - \eta_{\mathbf{x}_n}) \\ j, \ j \in [k], \ j \neq y_{\mathbf{x}_n} & \text{with probability } \bar{\eta}_{\mathbf{x}_n j} \end{cases}$

and for all **x**, conditioned on $y_{\mathbf{x}} = i$, with $\sum_{j \neq i} \bar{\eta}_{\mathbf{x}j} = \eta_{\mathbf{x}}$.

• L-risk of a classifier *f* under noisy setting is

 $R_L^{\eta}(f) = \mathbb{E}_{\mathcal{D}_n}[L(f(\mathbf{x}), \hat{y}_{\mathbf{x}})]$

where D_{η} is the joint distribution of **x**, $\hat{y}_{\mathbf{x}}$. Let f_{η}^* be the global minimizer of $R_L^{\eta}(f)$.

• RM under loss function *L*, is said to be *noise-tolerant* if

 $\Pr_{\mathcal{D}}[\operatorname{pred} \circ f^*(\mathbf{x}) = y_{\mathbf{x}}] = \Pr_{\mathcal{D}}[\operatorname{pred} \circ f^*_{\eta}(\mathbf{x}) = y_{\mathbf{x}}]$

• Robust Log Loss (RLL)

Deep Networks with softmax layer as the last layer, outputs a probability vector **u for any **x** (i.e. $f(\mathbf{x}) =$ **u**). The final classifier would be $h(\mathbf{x}) = q$, where q = $\arg \max u_r$ $r \in [k]$

The loss functions are now defined in terms of **u** as

$$L(\mathbf{u}, \mathbf{e_j}) = \begin{cases} \sum_{i=1}^{k} e_{ji} \log \frac{1}{u_i} = \log \frac{1}{u_j} & \text{CCE} \\ ||\mathbf{e_j} - \mathbf{u}||_1 = 2 - 2u_j & \text{MAE} \\ ||\mathbf{e_j} - \mathbf{u}||_2^2 = ||\mathbf{u}||_2^2 + 1 - 2u_j & \text{MSE} \\ log2 - e_{jj} \log(1 + u_i) + \\ \sum_{\substack{i=1\\i \neq j}}^{k} \frac{e_{jj}}{k-1} \log(1 + u_i) & \text{RLL} \end{cases}$$

For these loss functions, we have

$$\sum_{i=1}^{k} L(\mathbf{u}, \mathbf{e_i}) = \begin{cases} \sum_{i=1}^{k} \log \frac{1}{u_i} & \text{CCE} \\ \sum_{i=1}^{k} (2 - 2u_i) = 2k - 2 & \text{MAE} \\ k ||\mathbf{u}||_2^2 + k - 2 & \text{MSE} \\ k \log 2 & \text{RLL} \end{cases}$$

MAE, RLL satisfies our symmetry condition.

THEOREMS

• **Def:** A loss function *L* is said to be *symmetric* if it satisfies, for some constant *C*,

 $\sum_{i=1} L(f(\mathbf{x}), i) = C, \ \forall \mathbf{x} \in \mathcal{X}, \forall f.$

Theorem 1 In a multi-class classification problem, let loss function L satisfy Eq 2. Then L is noise tolerant under symmetric or uniform label noise if $\eta < \frac{k-1}{k}$.

Theorem 2 Suppose loss L satisfies Eq 2. If $R_L(f^*) = 0$, then L is also noise tolerant under simple non uniform noise when $\eta_{\mathbf{x}} < \frac{k-1}{k}$, $\forall \mathbf{x}$. If $R_L(f^*) = \rho > 0$ then, under simple non-uniform noise, $R_L(f^*_{\eta})$ is upper bounded by $\rho/(1 - \frac{k\eta max}{k-1})$, where η_{max} is maximum noise rate over $\mathbf{x} \in \mathcal{X}$.

Theorem 3 Suppose L satisfies Eq 2 and $0 \le L(f(\mathbf{x}), i) \le C/(k-1), \forall i \in [k]$. If $R_L(f^*) = 0$, then, L is noise tolerant under class conditional noise when $\bar{\eta}_{ij} < (1 - \eta_i), \forall j \neq i, \forall i, j \in [k]$.

RESULTS

R	ES	UI	LTS	

(2)

Data	loss	$\eta = 0\%$	$\eta = 30\%$	$\eta = 60\%$	CC
MNIST	CCE	0.9935	0.8955	0.5845	0.5776
	MAE	0.9924	0.9900	0.9788	0.9313
	MSE	0.9921	0.9868	0.9766	0.8505
	RLL	0.9934	0.9896	0.9639	0.9455
RCV1	CCE	0.9078	0.7630	0.5321	0.4920
	MAE	0.8627	0.8431	0.8401	0.8269
	MSE	0.9014	0.8743	0.8382	0.8015
	RLL	0.8876	0.8592	0.8254	0.8141
Imdb	CCE	0.8645	0.72316	0.6268	0.7858
	MAE	0.8520	0.8088	0.7174	0.8282
	MSE	0.8616	0.7725	0.6506	0.7874
	RLL	0.8648	0.8020	0.7010	0.8348
	CCE	0.7913	0.6918	0.4953	0.3771
News	MAE	0.8048	0.7742	0.6665	0.5547
group	MSE	0.7999	0.7553	0.6347	0.5519
	RLL	0.7929	0.7796	0.6990	0.6019

Table 1: Accuracies under different noise rates (η) for all datasets (for Imdb, η 's are halved). The last column gives accuracies under class conditional noise.

CONCLUSION

Figure 1: Train-Test Accuracies for CCE and MAE over epochs, for RCV1 Datasets under noise-rate (a) 0% (b) 40% (c) 80% (d) CC and MNIST Datasets under noise-rate (e) 0% (f) 40% (g) 80% (h) CC. Legends are shown in (i). (a), (e) also shows comparison between learning rate of RLL and MAE.

- RM with symmetric losses has interesting robustness properties.
- ERM is shown to be consistent under uniform noise.
- Results with MAE, RLL show robustness under uniform and class conditional noise (with diagonally dominant noise matrix).
- $R_L(f^*) = 0$ for robustness under non-uniform noise is very restrictive.
- Learning with RLL is faster compared to MAE but slower compared to CCE. Further work on optimization algorithms for fast learning is required.