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Abstract
A predicate encryption (PE) can be thought of as emulation of predicate function R : X × Y → {0, 1} in the en-

crypted domain. In case of a predicate encryption, given a key Kx (x ∈ X ) one can decrypt the ciphertext Cy (y ∈ Y) if
R(x, y) = 1. We studied predicate encryptions from different aspects.
1. Available encodings

(a) Pair Encoding due to Attrapadung.
(b) Predicate Encoding due to Wee.
(c) The encodings focus on the exponent polynomials of the available schemes.
(d) We observed certain equivalence relation between the encodings.

2. Integrating pair encoding with dual system group.
3. CCA-secure predicate encryption

(a) Schemes in both Attrapadung and Wee are only CPA-secure.
(b) Delegation and verifiability based CPA-to-CCA generic conversion is inefficient.
(c) We propose direct efficient conversion.

Introduction
For a Predicate Encryption (PE) for predicate func-
tion R,

• If ciphertext is CMy (M and y being the message
and ciphertext-attribute)

• If key is Kx (x being key-attribute)

• Can decrypt if R(x, y) = 1

IBE is earliest PE with equality predicate function.

Examples
1. Access Control Mechanism:

•A mail is encrypted for PhD students or Professors.
•No ME/MSc student should be able to decrypt it.
• Predicate function is access control matrix.

2. Searchable Encryption:

•Office database is encrypted in cloud.
• To search who gets salary more than 30, 000.
• Predicate function is ≥.

[1, 4] simplified the construction and the proof of CPA-secure predicate encryption by defining pair
encoding and predicate encoding respectively. [3] defined dual system group (DSG) to codify the proof
technique also. Available conversion techniques to construct a CCA-secure predicate encryption from
CPA-secure predicate encryption is not efficient.

Main Objectives
1. Finding relation between both the encodings is of theoretical interest.

2. Integrating pair encoding to dual system group allows one to design black-box security proof.

3. Available conversion mechanisms for CPA-secure PE to CCA-secure PE generically, is inefficient due
to requirement of excess pairing evaluation (which is considered to be the costliest operation).

Mathematical Tool
For prime order (p) group G1 = 〈g1〉 and G2 = 〈g2〉, e : G1 × G2 → GT is bilinear, non-degenerate and
efficiently computable map.

Predicate Encryption
A predicate encryption scheme for predicate function R is defined by following probabilistic polynomial
time algorithms,

• Setup: Generates pk and msk. Publishes pk.

• Keygen(msk, x): On input key-attribute x, generates secret key Kx.

• Enc(pk,M, y): Given ciphertext-attribute y, outputs ciphertext CMy as encryption of M .

•Dec(Kx, C
M
y ): Outputs M if R(x, y) = 1.

Pair Encoding
A Pair Encoding P for a predicate function R consists of four deterministic algorithms,

• Param(κ)→ n which is number of common variables h = (h1, . . . , hn) in EncK and EncC.

• EncK(x, N )→ (kx = (k1, . . . , km1);m2) where each ki is a polynomial of m2 own variables
(r1, . . . , rm2), n common variables and msk α.

ki (α, (r1, . . . , rm2), (h1, . . . , hn)) = biα+
∑

j∈[1,m2]

bijrj+
∑

j∈[1,m2]

k∈[1,n]

bijkrjhk

• EncC(y, N )→ (cy = (c1, . . . , cw1);w2) where each ci is a polynomial of (1 + w2) own variables
(s0, . . . , sw2) and n common variables.

ci (α, (s0, . . . , sw2), (h1, . . . , hn)) =
∑

j∈[0,w2]
aijsj+

∑
j∈[0,w2]
k∈[1,n]

aijksjhk

• Pair(x,y)→ E ∈ Zm1×w1
p such that kxEc>y = αs0.

Predicate Encoding
A predicate encoding P for a predicate function R consists of five [2] deterministic algorithms
(sE, rE, kE, sD, rD) satisfying following properties:

• linearity: ∀(x, y) ∈ X × Y , sE(y, ·), rE(x, ·), kE(x, ·), sD(x, y, ·), rD(x, y, ·) are Zp-linear.

• restricted α-reconstruction: ∀(x, y) ∈ X × Y such that R(x, y) = 1 and ∀w ∈ W ,
sD(x, y, sE(y,w)) = rD(x, y, rE(x,w)) and rD(x, y, kE(x, α)) = α.

Dual System Group
Dual system group consists of three abelian groups (G,H,GT ), an admissible bilinear map ê : G×H→
GT and six [3] randomized algorithms:

• SampP(1κ, 1n): outputs public parameter pp and secret parameter sp. pp contains common variables
and a linear map µ on H and sp contains a special element h̃ ∈ H such that µ(h̃) = 1.

• SampGT: Im(µ)→ GT .

• SampG(pp): Output g ∈ Gn+1.

• SampH(pp): Output h ∈ Hn+1.

• ŜampG(pp, sp): Output ĝ ∈ Gn+1.

• ŜampH(pp, sp): Output ĥ ∈ Hn+1.

with following properties:

• projective: ∀h ∈ H, s U← Zp, SampGT(µ(h); s) = ê(SampG0(pp; s), h) = ê(g0, h)

• associative: ∀g = (g0, . . . , gn) and ∀h = (h0, . . . , hn) and ∀i ∈ [1, n], ê(g0, hi) = ê(gi, h0).

CCA-secure predicate encryption from pair encoding

• Setup(1κ): Outputs PK =
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
where Hi

U← Z(d+1)×(d+1)
p , i ∈ [1, n + 2], B, D̃,ααα

U← GLd+1(Zp) × GLd(Zp) × Z(d+1)×1
p ,

D =
(
D̃ 0
0 1

)
,Z = B−>D, random H : {0, 1}∗ → Zp and g1, g2

U← G1 × G2, gT = e(g1, g2),
n← Param(κ)

• Keygen(x,MSK): Outputs secret key Kx = {gki(ααα,R,H|n)
2 }i ∈

(
G(d+1)×1

2

)m1 where (kx;m2) ←
EncK(x, N) for ki := biααα +

∑
j∈[1,m2]

bijZ
( rj

0
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+
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bijkH
>
k Z
( rj

0

)
for i ∈ [1,m1] and R =

( ( r1
0

)
, . . . ,

( rm2
0

) ) U← Z
(d+1)×m2
p

• Enc(y,M, PK): Outputs ciphertext Cy = (C ′0,C
cpa
y ) where C ′0 = g

(ηHn+1+Hn+2)B
(
s0
0

)
1 , C

cpa
y =

({gci(S,H|n)
1 }i ∈

(
G(d+1)×1

1

)w1,M.g
α>B

(
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T ) for ci :=

∑
j∈[0,w2]

aijB
( sj

0

)
+

∑
j∈[0,w2]

k∈[1,n]

aijkHkB
( sj

0

)
for

i ∈ [1, w1], η = H(C
cpa
y ) and (cy;w2)← EncC(y, N)

•Dec(Cy,Kx): It first defines modified secret key K̂x = (K0,Φ · K̃x[1], K̃x[2], . . . , K̃x[w1]) where

K0 = g
−Z
(
t
0

)
2 , Φ = g

(ηH>n+1+H>n+2)Z
(
t
0

)
2 and K̃x[i′] =

∏
i∈[m1]

(Kx[i])Eii′ for η = H(C
cpa
y ), t U← Zdp and

E← Pair(x,y, N). Then it computes e(g1, g2)
α>B

(
s0
0

)
= e(C ′0, K̂x[0])

∏
i∈[1,w1]

e(C
cpa
y [i], K̂x[i])

Results
Pair Encoding and Predicate Encoding
• Equivalent if we restrict m2 = 1 and w2 = 1 in pair encoding.

•Decryption matrix E in pair encoding =
(
rD(x,y,·) 0

0 sD(x,y,·)>
)

.

Pair Encoding and Dual System Group
• Black-box integration needs SampG and SampH is run (1 + w2) and m2 times respectively.

•We present correctness based on fundamental theorem of finite abelian group and proof based on ex-
tended assumptions.

CCA-secure Predicate Encryption
• Exploits the regular encoding property of pair encoding.

•We reuse randomness g
B
(
s0
0

)
1 to compute C ′0 = g

(ηHn+1+Hn+2)B
(
s0
0

)
1 .

•During decryption η is recomputed to compute g

(
−Z
(
t
0

)
,(ηH>n+1+H>n+2)Z

(
t
0

)
,0,...,0

)
2 for t U← Zdp and

B,Z ∈ Z(d+1)×(d+1)
p are somewhat orthogonal.

•Decryption now needs only 1 unit extra pairing to check validity of ciphertext.

Forthcoming Research
• Instantiate (weakly) attribute hiding predicate encryption using pair encoding and DSG as black-box.
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Introduction

Predicate Encryption (PE) emulates of predicate function
(R : X × Y → {0, 1}) in encrypted domain.
One can decrypt ciphertext Cy if the key Kx satisfies the predicate
function (i.e. R(x, y) = 1).
Different predicate encryptions for different predicate functions.

Equality predicate : Identity-Based Encryption.
Inner Product predicate : Inner Product Encryption.
Access Control predicate : Attribute-Based Encryption.

Applications: encrypted database search, controlling access to an
encrypted document etc.

Ciphertext and keys are usually elements of certain groups.
Available abstract encodings (pair and predicate encoding)

Focus on processing of exponents of those group elements.
Are abstract forms to achieve PE.
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Our Achievements

Certain equivalence relation between pair and predicate
encoding.

Generic integration of pair encoding with dual system group.

Efficient and generic conversion of CPA-secure PE to
CCA-secure PE in prime order groups.
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Equality Predicate: Identity-Based Encryption
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Chosen Ciphertext Security

Adversaries are usually active and can tamper with the
ciphertext.

In certain situation it can get decryption of certain messages
of its choice.

Chosen ciphertext security prevents such strong adversaries

Is therefore harder to achieve.

Verifiability based generic CPA-to-CCA conversions are
available.
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Example Scenario

We concentrate on Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) by Lewko.

ABE emulates access control predicate function R(x, y)

x is attribute set (e.g. Student, Professor, PhD, CSA etc)
y is access control matrix (A, ρ) where ρ defines authorized
parties.

Lewko’s CP-ABE is secure against passive adversaries (i.e.
CPA-secure).

Verifiability based CPA-to-CCA conversion

Checks ciphertext validity.
Such checking needs O(|x|) (extra) pairing which is the
costliest operation.
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Predicate Encryption from Pair Encoding

For a predicate family R : X × Y → {0, 1},
Setup(1κ): Generates public parameters PP and master secret
msk using h = (h1, . . . , hn)←Param(κ). PP is published and msk
is kept secret.
Keygen(msk , x ∈ X ): Generates corresponding secret key Kx

using ((k1, . . . , km1);m2)←EncK(x,N) where each ki is a
polynomial of m2 own variables (r1, . . . , rm2), n common variables
and msk α.

ki(α,(r1,...,rm2 ),(h1,...,hn)) = biα+
∑

j∈[1,m2]

bij rj+
∑

j∈[1,m2]

k∈[1,n]

bijk rjhk .

Encrypt(PP, y ∈ Y, M): Generates CM
y using

((c1, . . . , cw1);w2)←EncC(y,N) where each ci is a polynomial of
(1 + w2) own variables (s0, . . . , sw2) and n common variables.

ci((s0,...,sw2 ),(h1,...,hn)) =
∑

j∈[0,w2]
aij sj+

∑
j∈[0,w2]
k∈[1,n]

aijk sjhk

Decrypt(Kx, CM
y ): Outputs M by using E ∈ Zm1×w1

p ←Pair(x, y)
if R(x, y) = 1, else outputs ⊥.
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Our Conversion Technique

From Lewko’s CPA-secure CP-ABE (y = (A ∈ Zn×k
p , ρ : {1, . . . , n} → U),

x = S), we instantiate CCA-secure predicate encryption as follows,

Setup(N, κ): g1, g2
$← G1 ×G2, gT := e(g1, g2), n← Param(κ)

H := (H0,H1, . . . ,Hn) where Hi
$← Z(d+1)×(d+1)

p , i ∈ {0, . . . , n}.

B, D̃,ααα
$← GLd+1(Zp)×GLd(Zp)× Z(d+1)×1

p

D :=
(
D̃ 0
0 1

)
,Z := B−>D .

PK =

g
ααα>B
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1 , g

H0B

(
Id
0

)
1 , g

H1B

(
Id
0

)
1 , ··· , g
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n Z
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2


MSK = gααα2
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Our Conversion Technique
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Our Conversion Technique

Keygen(x = (x1, . . . , xn),MSK): (kx;m2 = 1)← EncK(x,N)

R = ( r
0 )

$← Z(d+1)×m2
p and outputs secret key Kx = g

kx(ααα,R,H)
2

such that K1 = g
ααα+H>

0 Z( r
0 )

2 , K2 := g
Z( r

0 )
2 , and K3,i = g

H>
i Z( r

0 )
2 for i ∈ [n]

Enc(y = (A, ρ),M,PK): (cy;w2 = n + k − 1)← EncC(y,N)

S = (( s
0 ) , ( s1

0 ) , . . . , ( sn
0 ) , ( v2

0 ) , . . . , ( vk
0 ))

$← Z(d+1)×(w2+1)
p

defines Ccpa
y = (C ′, g

cy(S,H|n)
1 )

where C1,` = g

H0

(
A`,1B( s

0 )+
∑

j∈[2,k]
A`,jB

( vj
0

))
+Hρ(`)B( s`

0 )

1 , C2,` = g
B( s`

0 )
1 for ` ∈ [1, n]

and C0 = g
B( s

0 )
1 , C ′ = M.e(g1, g2)ααα

>B( s
0 ).
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Our Conversion Technique
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then it computes η=H(Ccpa
y ) and defines Cy = (C ′0,C

cpa
y )

where C ′0 = g
(ηHn+1+Hn+2)B( s

0 )
1
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Our Conversion Technique

Dec(Cy,Kx): Computes K̃x[i
′] =

∏
i∈[m1]

(Kx[i ])
Eii′ for E← Pair(x, y,N).

defines K̂x = (K̃x[1], K̃x[2], . . . , K̃x[w1]) .

Then it computes e(g1, g2)ααα
>B( s

0 ) =
∏

i∈[1,w1]

e(Ccpa
y [i ], K̂x[i ]) which is used to

unblind C ′.

Correctness:
∏

i∈[1,w1]

e(Ccpa
y [i ], K̂x[i ]) = e(g1, g2)ααα

>B( s
0 )

Therefore C ′∏
i∈[1,w1]

e(Ccpa
y [i ],K̂x[i ])

= M
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Our Conversion Technique

Dec(Cy,Kx): Computes K̃x[i
′] =

∏
i∈[m1]

(Kx[i ])
Eii′ for E← Pair(x, y,N).

defines K̂x = (K0,Φ·K̃x[1], K̃x[2], . . . , K̃x[w1]) where K0 = g
−Z( t

0 )
2 and

Φ = g
(ηH>

n+1+H>
n+2)Z( t

0 )
2 for η=H(Ccpa

y ) and t
$← Zd

p .

Then it computes e(g1, g2)ααα
>B( s

0 ) = e(C ′0, K̂x[0])
∏

i∈[1,w1]

e(Ccpa
y [i ], K̂x[i ]) which is

used to unblind C ′.

Correctness:
∏

i∈[1,w1]

e(Ccpa
y [i ], K̂x[i ]) = e(g1, g2)ααα

>B( s
0 )+(t>0)Z>(ηHn+1+Hn+2)B( s

0 )

e(C ′0, K̂x[0]) = e(g1, g2)−(t>0)Z>(ηHn+1+Hn+2)B( s
0 )

Therefore C ′

e(C ′
0 ,K̂x[0])

∏
i∈[1,w1]

e(Ccpa
y [i ],K̂x[i ])

= M

We see that number of extra pairing computation in this scheme is 1.
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Conclusion

Efficient and generic conversion of CPA-secure PE to
CCA-secure PE in prime order groups.

Pair and predicate encodings are equivalent in some restricted
settings.

Generic integration of pair encoding with dual system group
results in a simpler proof.
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Thank You


