

Joseph Vimal Vas, High Voltage Engineering Lab, Indian Institute of Science, Bengaluru

Electromagnetic Interference (EMI)

EMI induces noise in electronic systems

- Modes of noise coupling
 - Conductive coupling
 - Common impedance coupling
 - Coupling via Electric and Magnetic fields

- Methods to reduce EMI
 - Shielding
 - Balancing
 - Filtering
 - Grounding

Electromagnetic Shielding

Materials interact with EM waves through:

- Reflection
- Absorption
- Multiple reflections

Requirements of a good shield

- High conductivity
- High permittivity
- High permeability

Commercial Shielding Materials

- Highly Conducting Materials- Copper, Aluminium, Stainless Steel
- Shielding mainly through reflection

EM interaction with materials

Casing of sensitive electronics

Drawbacks of Metallic shields

- Heavy and inflexible
- Prone to Corrosion
- Not cost effective – difficult to process

Monte Carlo Simulations

Step 1 – MC simulation performed to find the particle distribution using LJ potential.

Step 2 – Calculation of the interparticle contact resistance using the particle orientation

Step 3 – Modelling the resistive network using basic circuit theory and computing the composite conductivity.

Comparison with theoretical model for spherical particles

Spherical Particles

Effect of variation of filler loading and particle size

Interparticle distance vs filler loading

Effect of variation of filler conductivity

Effect of variation of standard deviation of filler size

Effect of variation of standard deviation of particle size

Effect of variation of aspect ratio

</div

Electromagnetic Properties of Carbon based Polymer Nanocomposites for Shielding, Chaffing and Camouflage Applications

Joseph Vimal Vas

Stray EM radiation problems and how to solve it- EMI Shielding

- A power surge due to EMI in one of the fighter planes on **USS Forrestal** triggered a missile to fire on board leading to a fire and 134 lives were lost (Vietnam, 1967).

USS Forrestal (CV-59)

- **Telesat's Anik E1 and E2**-The impulses created by this ESD permanently damaged critical components within the primary gyroscope guidance system control circuitry (Canada, 1994)

Telesat's Anik E1 satellite.

Different EM Shields

Microwave oven door

Shielding Chamber (EE, IISc)

Casing of sensitive electronics

EM Shields

Shield is any object, usually conducting, that reduces the effect of EM fields on one side from interacting with the devices or circuits on the other side.

$$R = |20 \log| \frac{(Z_0 + Z_s)^2}{4Z_0 Z_s}|$$

$$A = 8.686 k_s d$$

- Shielding effectiveness

$$SE = 20 \log \frac{E_{tn}}{E_{ts}} \text{ dB}$$

E_{tn} and E_{ts} are the transmitted Electric fields without and with shield respectively.

EM propagation in a thin shield

$$M = 20 \log \left| \frac{(Z_0 + Z_s)^2 - (Z_0 - Z_s)^2 e^{-j2k_s d}}{(Z_0 + Z_s)^2} \right|$$

$$Z_s = \sqrt{\frac{j\omega\mu_s}{\sigma_s + j\omega\epsilon_s}} \quad k_s = j\omega\sqrt{\mu\epsilon}$$

ϵ_s – shield permittivity, σ_s – shield conductivity, μ_s – shield permeability, $\omega = 2\pi f$

Literature Review - Conductivity achieved in Polymer Composites

No.	Filler	Polymer	wt %	Conductivity (S/m)
1	carbon nanotubes	Epoxy	10	1.00E+05
2	Carbon fibre (.16u dia, 100u)	theroplastics	40	2.86E+01
3	Ni filament (.4u)	theroplastics	37	7.14E+03
4	Silver(0.8um)	Polyimidesiloxane	40	6.71E+07
5	CNF (50-200nm)	LCP	15	1.43E+01
6	Carbon fibre (7um)	Epoxy	47	2.22E+01
7	Ni coated Carbon fibre (16nm dia)	PES	7	2.50E+02
8	Carbon black (29nm)	EVA/NR	20	1.00E+02
9	CNT	Shape Memory Polymer	6.7	8.33E+00
10	Expandable graphite	PPS	10	1.00E+02
11	CNT	Epoxy	1	1.00E+03
12	MWCNT	Silicone	1.5	1.00E-03

Conductivity

- Carbon – 1.28×10^5 S/m
- Silicone rubber – 3.85×10^{-19} S/m
- Copper - 5.85×10^7 S/m

Monte Carlo Simulations for Conducting Polymer Composites

Step 1 – MC simulation performed to find the particle distribution using LJ potential.

Step 2 – Calculation of the interparticle contact resistance using the particle orientation

Step 3 - Modelling the resistive network using basic circuit theory and computing the composite conductivity.

Validation of the model

Comparison with theoretical models

Comparison with experimental data

Monte Carlo Studies on Spherical and Rod like Particles

Composites with spherical particles

Percolation vs. particle size

Conductivity vs. particle size

Variation of particle conductivity

Composites with rod like particles

Conductivity vs. particle size

Conductivity Limitation

Interparticle distance vs. filler loading

Synthesis of Conventional Composites

Nano composites synthesis

RTV SR – Polymer + Nanofillers + Solvent

Ultrasonication

RTV filler mixture + Pt Catalyst

Curing

Nano filled SR

SEM of MWCNT

SEM of CNF

MWCNT-SR Composite

CNF-SR Composite

Synthesis of SR composites layered with CNF wafers

Silver Nitrate + Benzyl mercaptan + Solvent
Nano AgS Synthesis

Magnetic Stirrer

Ultrasonication

Nano AgS + CNF

Ultrasonication

Vacuum filtration

CNF wafer

CNF wafer

Initial mixture

Nano AgS

CNF wafer
 $\sigma = 1320$ S/m

SR composites layered with CNF wafer

SEM image of cross section of CNF wafer

SEM image of the structure of CNF wafer

SEM image of CNF wafer- unf SR composite

Results – SEM and EDX studies

Ag- S particles

CNF -Ag- S complex

No	Sample Type	C	O	Si	Ag	S
1	unfilled	54.32	17.3	46.16		
2	CNF filler	89.47	7.4			
3	Ag-S particles				57.2	42.7
4	CNF wafer	92.84			2.66	2.36
5	CNF wafer- SR composites	70.26	12.8	15.55	0.43	0.48

Results – FTIR

FTIR spectra of unfilled and CNF filled SR

Structure of the CNF wafer

Difference between the FTIR spectra of Ag-CNF binary composites and SR composite layered with CNF wafer

No	Group	Wave number (cm⁻¹)	Material
1	-C = C- (Alkenyl group)	1680-1620	CNF interactions
2	-C = C - (Aromatic)	1700-1500	AgS nanoparticle
3	-Ag – S	1008,1355	
4	C ₆ H ₅ –CH ₂ - X	690,710,730-770	

Conductivity and Permittivity Measurements

- The CNF wafer has a conductivity of 1360 S/m
- Both the conventional composites turned conducting at filler loadings less than 3%.

Conventional Composite

SR Composite layered with CNF wafer

Permittivity measurement as per ASTM D5568

Real Permittivity

- Permittivity of conventional composites < 10
- SR composites layered with CNF wafers showed very high real and imaginary permittivities

Conductivity vs filler loading for different composites

Imaginary Permittivity

Shielding Effectiveness of different composites

ASTM D4935 measurement set up
fabricated in the lab

Reflection and absorption losses of SR
composites with 1 CNF wafer layer

Shielding Effectiveness of SR composites layered
with CNF wafers

Reflection and absorption losses of SR
composites with 2 CNF wafer layers

Setup used for the Anechoic Chamber measurements

Radiated field

Horn antenna used for measurement

Electric and Magnetic Fields Experienced by the sample

Shielding Effectiveness
Measured in the 2-18 GHz
frequency range

Measured field in the absence of
the sample

Measured field with the sample

EM Modelling of Layered Composites

Sample Type	Absorption (dB)	Thickness (mm)
1x1.5g CNF wafer	-	0.244
1x1.5g CNF wafer - unf SR	31.32	0.729
1x1.5g CNF wafer - 2% CNF+ SR	28.61	0.697
2x1.5g CNF wafer - unf SR	34.93	0.752
2x1.5g CNF wafer - 2% CNF+ SR	52.22	1.942
2x1.5g CNF wafer - 4% CNF + SR	43.98	0.675

Prediction of SE based on 3 layer model

CNF wafer with 1 wafer

CNF wafer with 2 wafer

Prediction of SE based on permittivity

Conclusions

Studies on Conventional Composites

- The conventional conducting polymers with MWCNT and CNF filled SR had very less conductivity and shielding effectiveness.
- The shielding effectiveness of the conventional conducting composites were not suitable for shielding applications.

Studies on SR composites with CNF wafers

- Composites were synthesized with highly conducting CNF wafers.
- Even though the bulk conductivity of the composites were low, the CNF wafer composites showed good shielding behavior.
- This was because of the highly conducting CNF wafer layers present in the composite.

Waveguide measurements

- The shielding behavior, reflection loss, absorption loss was measured in the frequency range 5-18 GHz.
- Samples showed trends similar to the Anechoic Chamber method and the coaxial fixture method for low frequency.
- The reflection loss of all the composites were low but increased with CNF content.
- This could be because of the increase in real permittivity due to increased carbon content.
- The large absorption loss was due to the higher imaginary permittivity of the layered composites.

Shielding, Reflection and Absorption Measurements

- The set up used was designed such that the samples experienced a TEM wave.
- The conventional composites showed very low shielding effectiveness.
- The SR composites with different layers of CNF wafers had very high shielding effectiveness
- All the composites showed very low reflection loss
- The shielding behavior was mainly attributed to the absorption loss
- The absorption loss depends on the thickness of the CNF wafers in the SR matrix
- The reflection loss marginally increased with CNF content.