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EMI induces noise in electronic

Materials interact with EM waves through:

Reflection
Absorption
Multiple reflections

Requirements of a good shield

High conductivity
High permittivity
High permeability

Commercial Shielding Materials
Highly Conducting Materials- Copper,

Aluminium, Stainless Steel
Shielding mainly through reflection

systems
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Methods to reduce EMI

e Grounding
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Reflected Wave Absorption loss ,A

Reflection loss, R : we Reflection

loss , M

EM interaction with materials

Drawbacks of Metallic shields
* Heavy and inflexible
* Prone to Corrosion

* Not cost effective — difficult to process Casing of sensitive electronics
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Microwave oven door
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find the particle distribution using LJ

tep 1 — MC simulation performed to

Step 2 — Calculation of the interparticle
contact resistance using the particle

Step 3 - Modelling the resistive network
using basic circuit theory and computing
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Effect of variation of filler

Comparison with theoretical model
for spherical particles
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Comparison with experimental data
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Results
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Comparison with experimental data
—rod like fillers

Rod like particles
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 Composites with rod like fillers achieve conductivity at lower filler
loadings than those with spherical fillers.
* The conductivity is limited owing to lack of contact between

fillers.

* Conductivity is set up by tunneling of electrons through the

polymer layer.

Filler loading (wt %)

of filler  Effect of variation of standard
cle size deviation of filler size

Nano AgS Synthesis

CNF wafer

*

SR composite

2.0 mm
0.24 mm

Layered structure in SR composites
layered with CNF wafers

Cross section of CNF wafer
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FTIR spectra of SR
composites with CNF
wafers showing Ag- S

as well as -1
interactions
between Ag- S and
CNF particles
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Conductivity measurements using van der Pauws method
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Permittivity measurements using ASTM D5568 method
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ASTM D4935 Method
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* The conventional conducting polymers with MWCNT and CNF filled SR had very less conductivity and shielding
effectiveness. The shielding effectiveness of the conventional conducting composites were not suitable for
shielding applications.

* Even though the bulk conductivity was low, the CNF wafer composites showed good shielding behavior. This was
because of the highly conducting CNF wafer layers present in the composite.

* The reflection loss of all the composites were low but increased with CNF content. This could be because of the
increase in real permittivity due to increased carbon content. The large absorption loss was due to the higher
imaginary permittivity of the layered composites.

e All the composites showed very low reflection loss. The shielding behavior was mainly attributed to the
absorption loss. The absorption loss depends on the thickness of the CNF wafers in the SR matrix.
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Electromagnetic Properties of Carbon based Polymer
Nanocomposites for Shielding, Chaffing and
Camouflage Applications

Joseph Vimal Vas
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Stray EM radiation problems and how to solve it- EMI Shielding

e A power surge due to EMI in one of the fighter planes * Telesat’s Anik E1 and E2-The impulses created by this

on USS Forrestal triggered a missile to fire on board ESD permanently damaged critical components within
leading to a fire and 134 lives were lost (Vietnam, the primary gyroscope guidance system control circuitry
1967). (Canada, 1994)

USS Forrestal (CV-59)

Telesat’s Anik E1 satellite.
Different EM Shields
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EM Shields

Shield is any object, usually conducting, that reduces the effect of EM fields on one side
from interacting with the devices or circuits on the other side.

n Shield

Z0 /\/\Z aTa¥e

Incident wave \/

< — R
Reflected Wave Absorption loss ,A >
A Transmitted
/ \/,/ n aVva wave
Reflection loss, R : Me Reflectlon .
loss , M EM propagation in a thin shield
(ZO +ZS)2 7+ 7 2__ 7 —7 2 ,—j2ksd
= |20 log| A = 8.686k,d M = 20 log| Lot Zs) —(Zo — Z5)"e
47,7, s gl (Zo + Z)? |

* Shielding effectiveness g
SE =20 log " dB %= 15t jwe, ke = joIiE

E¢, and Egg are the transmitted Electric

fields without and with shield respectively. €5 — shield permittivity, o,— shield conductivity,

IL— shield permeability, w = 2nf
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Literature Review - Conductivity achieved in Polymer Composites

No. Filler Polymer wt % Conductivity (S/m)
1 carbon nanotubes Epoxy 10 1.00E+05
2 Carbon fibre (.16u dia, 100u) theroplastics 40 2.86E+01
3 Ni filament (.4u) theroplastics 37 7.14E+03
4 Silver(0.8um) Polyimidesiloxane 40 6.71E+07
5 CNF (50-200nm) LCP 15 1.43E+01
6 Carbon fibre (7um) Epoxy 47 2.22E+01

Ni coated Carbon fibre
7 (16nm dia) PES 7 2.50E+02
8 Carbon black (29nm) EVA/NR 20 1.00E+02
Shape Memory
9 CNT Polymer 6.7 8.33E+00

10 Expandable graphite PPS 10 1.00E+02
11 CNT Epoxy 1 1.00E+03
12 MWCNT Silicone 1.5 1.00E-03

Conductivity

e Carbon—1.28x10°S/m
* Silicone rubber —3.85 x 101°S/m
* Copper- 5.85x107S/m
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Monte Carlo Simulations for Conducting Polymer Composites

Step 1 — MC simulation performed to
find the particle distribution using LJ
potential.
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100

Attractive Force

F=0

The LJ potential

Step 2 — Calculation of the interparticle
contact resistance using the particle

orientation (Filler
i Conducting path

]

E o] %D

Step 3 - Modelling the resistive network
using basic circuit theory and computing
the composite conductivity.
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Monte Carlo Studies on Spherical and Rod like Particles

Composites with spherical particles
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Synthesis of Conventional Composites

Nano composites synthesis

Ultrasonication urin

: C
RTV SR - Polymer + Nanofillers + Solvent RTV filler mixture + Pt Catgﬂygt%g Nano filled SR

Length =3-6 um
Diameter =20 nm
Aspect ratio = 300

SEM of MWCNT MWCNT-SR Composite

Length = 200.um
+Diameter = 200 nm

JAspect ratie = 1000
- A

SEM of Silicone
Rubber

“ CNF CNF-SR Composite

SR filled with nano carbon
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Synthesis of SR composites layered with CNF wafers

_ . Magnetic Stirrer Ultrasonication
Silver Nitrate + Benzyl mercaptan + Solvent NanoAgS+CNF ———  CNF wafer
Nano AgS Synthesis Ultrasonication Vacuum filtration
CNF wafer
SR composite 2.0mm
0.24 mm
o CNF wafer SR composites layered with CNF
Initial mixture Nano AgS 0=1320S/m wafer

1 R ¢ . 4 . Oy
Al i \ ] [ :
.\ TAY 2 '?'Accv Spot Magn [ ——
1 ] P k T200kv 4.0 50000x TLD 6.7 AFMM
S RNY 4 @* 3 BT %

SEM image of cross section of CNF wafer SEM image of the structure of CNF wafer

o>\ ﬁz 3 oy
SEM image of CNF wafer- unf
SR composite
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Results — SEM and EDX studies

CNF -Ag- S complex

kel

No | Sample Type C 0] Si Ag S
1 unfilled 5432 |17.3 |46.16
2 CNF filler 89.47 (7.4
3 Ag-S particles 57.2 |42.7
4 CNF wafer 92.84 2.66 |2.36
Co e CNF wafer- SR
70.26 |12.8 |15.55 [0.43 [0.48
Ag- S particles 5 | composites
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Results — FTIR
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Structure of the CNF wafer
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Conductivity and Permittivity Measurements

* The CNF wafer has a conductivity of 1360 S/m
* Both the conventional composites turned
conducting at filler loadings less than 3%.

Conventional Composite

i

N- type connectors to Vector
Network Analyzer (VNA)

Permittivity measurement
as per ASTM D5568
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Imaginary Permittivity

al composites < 10
h CNF wafers showed

very high real and imaginary permittivities
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Shielding Effectiveness of different composites

ASTM D4935 measurement set up Shielding Effectiveness of SR composites layered
fabricated in the lab 50.00 - with CNF wafers
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Setup used for the Anechoic Chamber measurements

Anechoic Chamber
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Spectrum
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EM Modelling of Layered Composites

Absorption Thickness
Sample Type (dB) (mm)

1x1.5g CNF wafer - 0.244

e aBm
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3.00E+07 5.30E+08 1.03E+09
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Prediction of SE based on 3 layer model Prediction of SE based on permittivity
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Conclusions

Studies on Conventional Composites

The conventional conducting polymers with MWCNT and CNF filled SR had very less conductivity and shielding
effectiveness.

The shielding effectiveness of the conventional conducting composites were not suitable for shielding applications.

Studies on SR composites with CNF wafers

Composites were synthesized with highly conducting CNF wafers.

Even though the bulk conductivity of the composites were low, the CNF wafer composites showed good shielding
behavior.

This was because of the highly conducting CNF wafer layers present in the composite.

Waveguide measurements

The shielding behavior, reflection loss, absorption loss was measured in the frequency range 5-18 GHz.

Samples showed trends similar to the Anechoic Chamber method and the coaxial fixture method for low frequency.
The reflection loss of all the composites were low but increased with CNF content.

This could be because of the increase in real permittivity due to increased carbon content.

The large absorption loss was due to the higher imaginary permittivity of the layered composites.

Shielding, Reflection and Absorption Measurements

The set up used was designed such that the samples experienced a TEM wave.

The conventional composites showed very low shielding effectiveness.

The SR composites with different layers of CNF wafers had very high shielding effectiveness
All the composites showed very low reflection loss

The shielding behavior was mainly attributed to the absorption loss

The absorption loss depends on the thickness of the CNF wafers in the SR matrix

The reflection loss marginally increased with CNF content.
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