

Human-Animal Conflicts
Long-Range Goal

Exploring the use of WSN for the minimization of human-animal conflicts

Different Sensing Modalities

Pyroelectric Infra-Red (PIR)

Pulse Doppler Radar

Fiber Optics

Our Focus

PIR

PIR
Pulse Doppler Radar
Fiber Optics
Working of PIR Sensor System

Height and Motion based Classification

Difference in height
Vegetation: oscillatory motion

Human
Animal
EIRIS: a passivE InfraRed based Intrusion System
System

Simplified Correlation and Energy

$$\begin{aligned}
 & \text{Correlation at start} & & \text{Correlation for next sample} & & \text{Common computation} \\
 & \begin{matrix} x_0 & x_1 & x_2 & x_3 & \dots \\ y_0 & y_1 & y_2 & y_3 & \dots \end{matrix} & & \begin{matrix} x_0 & x_1 & x_2 & x_3 & \dots \\ y_0 & y_1 & y_2 & y_3 & \dots \end{matrix} & & x_2y_1 \\
 & \xrightarrow{\text{Shift}} & & \xrightarrow{\text{Shift}} & & \\
 & \begin{matrix} x_0 & x_1 & x_2 & x_3 & \dots \\ y_0 & y_1 & y_2 & y_3 & \dots \end{matrix} & & \begin{matrix} x_0 & x_1 & x_2 & x_3 & \dots \\ y_0 & y_1 & y_2 & y_3 & \dots \end{matrix} & & x_1y_2 + x_2y_3 \\
 & \dots & & \dots & & \dots \\
 & \begin{matrix} x_0 & x_1 & x_2 & x_3 & \dots \\ y_0 & y_1 & y_2 & y_3 & \dots \end{matrix} & & \begin{matrix} x_0 & x_1 & x_2 & x_3 & \dots \\ y_0 & y_1 & y_2 & y_3 & \dots \end{matrix} & & x_1y_2 \\
 & & & & & & \\
 & C(-2,0) = x_2y_0 & & C(-2,1) = x_3y_1 & & \\
 & C(-1,0) = x_1y_0 + x_2y_1 & & C(-1,1) = x_2y_1 + x_3y_2 & & \\
 & C(0,0) = x_0y_0 + x_1y_1 + x_2y_2 & & C(0,1) = x_1y_1 + x_2y_2 + x_3y_3 & & \\
 & C(1,0) = x_0y_1 + x_1y_2 & & C(1,1) = x_1y_2 + x_2y_3 & & \\
 & C(2,0) = x_0y_2 & & C(2,1) = x_1y_3 & & \\
 \end{aligned}$$

 Reduces the computation complexity from $O(W^2)$ to $O(W)$

$$\hat{E}_A(m) = \alpha \hat{E}_A(m-1) + s^2_A(m)$$

Energy Calculation: Reduced Memory Requirements
Literature: PIR Sensors in an Outdoor Setting

Consequence of Temperature on PIR Signals

Human Walk: Poor Signal in A, B and C

Polarity reversal for the human walk in same direction
Example: Captured Motions

Exponential Weighted Energy and Recursive Correlation
Intruder vs Clutter

	Minimum Accuracy	Average Accuracy
Detecting Intruder	96.8 %	96.5 %
Rejecting Clutter	92.6 %	96.3 %
Overall	95.5 %	96.4 %

Human vs Animal

	Minimum Accuracy	Average Accuracy
Human Detection	92.1 %	96.9 %
Animal Detection	100.0 %	98.3 %
Overall	93.9 %	97.2 %

Classification via Support Vector Machine (SVM)
Deployment at Main Guest House, IISc

During March (2 days)				
Intrusions	Correctly Detected	Misses	Misclassified	False Alarms
518	446	25	47	31

During April and May (4 days)				
Intrusions	Correctly Detected	Misses	Misclassified	False Alarms
734	693	18	29	5

Ongoing Work

VPA Testing Station : tie-up with Centum Electronics
Comparing different features and classifiers

We are the first to recognize and study the impact of temperature on PIR signal [1]

[1] Choubisa et. al. "Challenges in Developing and Deploying a PIR Sensor-Based Intrusion Classification System for an Outdoor Environment", Eleventh IEEE International Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2016), November 2016, Dubai,

Impact of Background Temperature on PIR Signals

A Learning in Bannerghatta Park

 Day 1: Platform deployed outside fenced area
 24 detections registered - no false alarms or misclassifications
 Day 2: STP shown placed inside the lion enclosure
 Platform was mauled...

Deployment at Main Guest House (MGH) IISc

Wall mounting of STP inside metal enclosures

Snapshot of deployment site

Demoed the sensor platform and MGH deployment at LCN, Dubai

Design, development, study and deployment of a passiv**E** **InfraRed** based **I**ntrusion **S**ystem for an outdoor environment

Tarun Choubisa

ECE Department

Thesis Advisor: Prof. P. Vijay Kumar

WSN for the Minimization of Human-Animal Conflicts

Long-Range Goal

Exploring the use of WSN for the minimization of human-animal conflicts

Different Sensing Modalities

Pyroelectric Infra-Red (PIR)

Pulse Doppler Radar

Fiber Optics

Our Focus

PIR

PIR

Pulse Doppler Radar

Fiber Optics

PIR Sensors: Detects Change in Incident Radiation

Signals generated from Intrusion

Dual Pixel Sensor Die

Virtual Beams

Virtual Pixel Array (VPA)

More sophisticated: multi-lens

PIR Sensor

Challenges Faced in Outdoor Deployments

False Alarms from Wind-Blown Vegetation

Wind-Blown Vegetation (Clutter)

PIR Module

Output Signal

Need for Human/Animal Classification

Man ?
Animal ?

Literature Relating to the Use of PIR Sensors in an Outdoor Setting

Variety of
Vegetative
Clutter
Considered

Low
Cost

EIRIS: a passivE InfraRed based Intrusion System

A
B
L1
L2

C
D
R1
R2

In-house developed PIR sensor platform

Intruder Waveforms

Designed VPA

Clutter Waveform

Evolution of Sensor Platform

Chirplet-Based Model For Intruder Detection

Explaining the chirp

Observed Intruder and clutter signals

How Does Chirplet Decomposition Help?

Final 2-Stage Classifier: Classification Accuracy

Simplified Correlation and Energy Calculations

$$\hat{E}_A(m) = \alpha \hat{E}_A(m-1) + s^2_A(m)$$

Energy Calculation: Reduced Memory Requirements

	Clutter	Intruder	Human	Animal
Chirplet and Energy	98.5 %	99.4 %	98.0 %	98.7 %
Simplified Correlation and Energy	96.3 %	96.5 %	96.9 %	98.3 %

Impact of Background Temperature on PIR Signals

Dramatic drop in signal strength as ambient temperature approaches human-body temperature

Impact of Background Temperature on PIR Signals and Solution

Impact of sunny and shadow patches: spatial variation

We are the first to recognize and study the impact of temperature on PIR signal [1]

Solution: Employ a complimentary sensing modality such as a low-power optical camera
(Ongoing work)

A Learning Experience in Bannerghatta Park, Bangalore

Mauled . . .

Day 1: Platform deployed outside fenced area

24 detections registered - no false alarms or misclassifications

Day 2: STP shown placed inside the lion enclosure

Platform mounting was mauled . . .

Deployment: Bannerghatta Park, Bangalore, India

Deployment at Main Guest House, IISc

Wall mounted sensor platforms

Deployment Site

Example Intrusions: Classified by the Platform

Web based GUI

During April and May (4 days)

Intrusions	Correctly Detected	Misses	Misclassified	False Alarms
734	693	18	29	5

Ongoing Work

Algorithm Comparison

Camera as complementary modality

VPA testing Station:
tie-up with Centum
Electronics

Comparing different
features and classifiers

Thank You! Questions?

Platform

Remote
Deployment

Signals

Backup Slides

PIR Sensing: Pyroelectricity

- PIR sensors work on the principle of pyroelectricity
 - Temperature (T) dependent spontaneous polarization P_s
 - Detects changes in incident radiation (w)

$$\Delta w \rightarrow \Delta T \rightarrow \text{transient current}$$

Incident radiation and resultant current

Preventing Overlap of VPA

Effect of vertically offsetting sensor wrt lens to prevent overlapping beams

- The VPA generated by two sensor-lens units can overlap
 - Offset sensor wrt lens to prevent overlap

VPA when a Multi-lens is Used

Point Spread Function

- Object Plane has one and only one corresponding image plane
 - Intruder plane is not restricted to
- Blurred patch is called the Point Spread Function (PSF) of the lens
 - Viewed as impulse response of the lens
 - It is a scaled version of the lens aperture
- The spread (dimensions of the patch) is $h = A\left(\frac{d}{v} - 1\right)$

Literature Relating to the Use of PIR Sensors in an Outdoor Setting

Author Year	Type of PIR Sensor	Indoor or Outdoor	Target Range and Motion	Classification Approach	Test Environment(s)	Number of classes	Objects Classified	Accuracy	Comment
Lin [21] 2005	Single analog sensor	Outdoor	5m (approximately)	Frequency-domain filtering followed by adaptive thresholding	200 nodes, three sensing modalities	4	Humans, humans with ferrous objects, vehicles, absence of target	NS	Accuracy at individual sensor level not discussed
Arora et al [22] 2005	Single sensor with integrated cone optics	Outdoor	12m (Humans) and 25m (SUV)	Frequency-domain filtering followed by thresholding	0.3 Sq Km opening in a forest	3	Humans, vehicles and absence of target	NS	False alarms arising from moving vegetation not discussed
Wang [23] 2011	Dual-element sensor with 2-layer Fresnel lens	NS	NS	WPE plus LS-SVM	Summer and autumn; 6 humans and 2 dogs; 60 watt bulbs	2	Human versus non-human	91.20%	False alarms arising from moving vegetation not considered
Hong et al [24] 2012	Single, digital PIR with golf-ball type multilens	Outdoor	2m-15m	Neyman-Pearson detector under Bayesian model for (a) window energy and (b) alarm duration	Sensor placed in front of bushes, under 3 conditions: (a) hot and windless day, (b) clear and breezy day and (c) cool day with light wind	2	Human or false alarm	$P_{FA} = 9.6\%$, $P_D = 90\%$	False alarms from moving animals not considered
Gong et al [25] 2012	Single analog sensor	Both	NS	Coefficients of auto-regressive-process model + SVM	NS	2	Human versus non-human (dog, goose)	94.6% (outdoor)	False alarms arising from moving vegetation not considered
Jin et al [26] 2012	Single analog sensor with multilens	Outdoor	5m	CWT + SDF + SVM	3 sites along outdoor trail that included a dry creek bed and some choke points	4	Humans walking and running, animals, absence of target	91.70%	Smaller range of operation, false alarms not explicitly addressed
Chari et al [27] 2014	128-pixel linear array	Outdoor	10m-20m (transverse motion)	Height-width ratio and energy in Gabor-filter frequency bands fed as inputs to decision-tree-based classifier	(a) Arid terrain with thorn bushes and (b) Petting zoo having grass, trees, rolling hills	2	Human versus animal; animals included: small cows, ponies, horses, small donkeys	94%	More expensive lens, higher power consumption of sensor
Zhao et al [28] 2016	Single sensor with 3-layer multilens	Both	NS	EMD + SDF + SVM + Weighted-Voting	NS	2	Humans versus animals (dogs and geese)	99% (outdoor)	False alarms arising from moving vegetation not considered
Upadrashta et al (pesent paper) 2017	Array of 8 analog sensors & 4 multilenses	Outdoor	5m-10m	(Chirp, Correlation, Energy) + SVM on laptop (Energy, Correlation) + SVM on mote	Human and animal motion in a variety of vegetative clutter environments	3	Human versus short animals (dogs, leopard, tiger, wolf), absence of target	97%	Variety of vegetative clutter contained in data set

CWT: Continuous Wavelet Transform
 EMD: Empirical Mode Decomposition

LS: Least Squares
 SUV: Sport Utility Vehicle

NS: Not Specified
 SDF: Symbol Dynamic Filtering

SVM: Support Vector Machine
 WPE: Wavelet Packet Entropy

The Sensor Platform (SP)

Lenses on the outside

Sensors inside

Simple, Height-Based Classification

Incoming Radiation to PIR from Virtual Pixel Array

Good Correlation in Case of an Intruder

Intruder = Human / Animal

Intruder Signals Exhibit Chirp

Intruder signal its corresponding Short-Time Fourier Transform

Intruder Detection via Chirplet Decomposition

Example chirplet

Real signal approximated by 3 chirplets

- Chirplet
$$x(n; m, \omega, c, d) = (2\pi d^2)^{-\frac{1}{4}} \exp\left\{-\frac{(n-m)}{4d^2}\right\} \times \exp\left\{j\frac{c}{2}(n-m)^2 + j\omega(n-m)\right\}$$
- Complex analytic representation of signal $s_a(n) = s(n) + j\hat{s}(n)$
- Intruder signal well approximated by sum of 3 chirplets: $s_a(n) = \sum_{i=1}^3 a_i e^{j\phi} x_i(n; m_i, \omega_i, c_i, d_i)$
- Chirplet-based feature vector C_{60} : Append ML estimates $(\hat{a}_i, \hat{m}_i, \hat{\omega}_i, \hat{c}_i, \hat{d}_i)$ corresponding to 3 chirplets
- C_{60} has dimension 60: (5 Parameters per Chirplet * 3 Chirplets per Signal * 4 Signals)

Simplified Correlation and Energy Calculations

Reduces the computation complexity from $O(W^2)$ to $O(W)$

$$\hat{E}_A(m) = \alpha \hat{E}_A(m-1) + s^2_A(m)$$

Energy Calculation: Reduced Memory Requirements

	Clutter	Intruder	Human	Animal
Chirplet and Energy	98.5 %	99.4 %	98.0 %	98.7 %
Simplified Correlation and Energy	96.3 %	96.5 %	96.9 %	98.3 %

Simplified Correlation and Energy Calculations

x_0	x_1	x_2	x_3	...
y_0	y_1	y_2	y_3	...

x_0	x_1	x_2	x_3	...
y_0	y_1	y_2	y_3	...

$$C(-2,0) = x_2 y_0$$

$$C(-1,0) = x_1 y_0 + x_2 y_1$$

$$C(0,0) = x_0 y_0 + x_1 y_1 + x_2 y_2$$

$$C(1,0) = x_0 y_1 + x_1 y_2$$

$$C(2,0) = x_0 y_2$$

$$C(-2,1) = x_3 y_1$$

$$C(-1,1) = x_2 y_1 + x_3 y_2$$

$$C(0,1) = x_1 y_1 + x_2 y_2 + x_3 y_3$$

$$C(1,1) = x_1 y_2 + x_2 y_3$$

$$C(2,1) = x_1 y_3$$

$$\hat{E}_A(m) = \alpha \hat{E}_A(m-1) + s^2_A(m)$$

Reduces the computation complexity from $O(W^2)$ to $O(W)$

Reduced Memory Requirements

Temperature Variation in Bangalore during March

Hour-by-Hour
Temperature Fluctuation

Time window in which PIR Sensor
registered a weak signal

Impact of Background Temperature on PIR Signals

Dramatic drop in signal strength as ambient temperature approaches human-body temperature

Impact of temperature on different surfaces: background and ground

Experimental Setup: Drafter Board

Aperture
Motor to move the shutter

Heat source:
Iron box with wooden shutter

Arduino-based control circuit

Webcams for position feedback

STP inside an acrylic box

Stepper motors for moving STP

Experimental setup showing STP mounted on a drafter board