
Analysis and Transformation of
File processing Programs

M. Raveendra Kumar
raveendra.kumar@tcs.com

Guide

Raghavan Komondoor
raghavan@csa.iisc.ernet.in

Indian Institute of Science, Bangalore, India

File Processing Programs - Context

• File processing programs process data from sequential
files.

• Need for tool support in analysis and transformation tasks
such as:

– Bug detection, program understanding.

– Service extraction, batch to online conversion etc.

• Key challenges.

– Lack of abstractions and modularity.

– Large size and evolved over a period.

• Our research goal is to extend low-level building blocks of
tools to file processing programs.

– Program specialization, slicing, and Symbolic execution.

2

Summary of Key contributions

3

1. Novel static analysis approach for

– Program specialization

– File format conformance checking

2. Approximate inter-procedural (static) analysis using
Prefix call strings

– Improves scalability

– Maintains precision at application level modules

3. Automated crash testing to detect buffer overflow
errors.

– Generates test cases that can expose buffer overflow
vulnerabilities.

[In Int. Conf. on Software Maintenance and Evolution (ICSME), 2015.]

[In Int. Conf. on Software Analysis, Evolution, and Reengineering (SANER),
2015.]

Novel static analysis approach for
1. Program specialization and
2. File format conformance checking

5

Describing Files- Input file format specification

𝒜

typ:
HDR

pyr:
10205

amt:
9000

src:
SAME

ITM
rcv:
10201

amt:
3000

ITM 10103 4000

ITM 18888 2000

TRL

HDR 20221 4000 DIFF

ITM 10234 4000

TRL

qs qi qe

Itm
ItmSHdr

DHdr

Trl

qsh

qdh

SHdr

qt
eof

DHdr

Itm

File format automaton

Input file

A file f conforms to a file format automaton, iff the sequence of types of the
records in f takes the file format automaton from start state to some final state.

SHdr

Itm

Itm

Itm

Trl

DHdr

Itm

Trl

eof

Record
types

Program Specialization Problem
• What portion of a program is relevant to a functionality?

6

qs qi qe

ItmItmSHdr

DHdr

Trl

qsh

qdh

SHdr

qt
eof

DHdr

Itm

File format
specification for same
bank functionality

File format
specification for
diff bank functionality

qs qi qe

qsh

qt

SHdr Itm
Itm

Trl

SHdr

eof

qs qi qe

qdh

qt

DHdr Itm

DHdr

Itm

Trl eof

Key observation : In file processing programs, different restricted input files trigger
different functionality in a program. Therefore, each specialization automaton represents
different functionality.

A specialization automaton is a sub-automaton of a file format automaton that accepts
a subset of files

Program Specialization

7

Program Specializer
Tool

qs qi qe

qsh

qt

SHdr Itm
Itm

Trl

SHdr

eof

qs qi qe

qdh

qt

DHdr Itm

DHdr

Itm

Trl eof

Program Specializer
Tool

/1/void processrec(rec[] inp){

/2/ int A[5], B[5],rec r = inp[0];

/3/ int iA =0, iB=0, i = 0;

/4/ while(r != Eof){

/5/ if(r.typ == ‘HDR’)

/6/ if(r.src == ‘SAME’)

/7/ A[iA++] = r.Amt;

/8/ else if(r.src == ‘DIFF’)

/9/ B[iB++] = r.Amt;

/10/ else if

/11/

/12/ i++;

/13/ r = inp[i];

/14/ }

/15/}

/1/void processrec(rec[] inp){

/2/ int A[5], B[5],rec r = inp[0];

/3/ int iA =0, iB=0, i = 0;

/4/ while(r != Eof){

/5/ if(r.typ == ‘HDR’)

/6/ if(r.src == ‘SAME’)

/7/ A[iA++] = r.Amt;

/8/ else if(r.src == ‘DIFF’)

/9/ B[iB++] = r.Amt;

/10/ else if

/11/

/12/ i++;

/13/ r = inp[i];

/14/ }

/15/}

/1/void processrec(rec[] inp){

/2/ int A[5], B[5],rec r = inp[0];

/3/ int iA =0, iB=0, i = 0;

/4/ while(r != Eof){

/5/ if(r.typ == ‘HDR’)

/6/ if(r.src == ‘SAME’)

/7/ A[iA++] = r.Amt;

/8/ else if(r.src == ‘DIFF’)

/9/ B[iB++] = r.Amt;

/10/ else if

/11/

/12/ i++;

/13/ r = inp[i];

/14/ }

/15/}

/1/void processrec(rec[] inp){

/2/ int A[5], B[5],rec r = inp[0];

/3/ int iA =0, iB=0, i = 0;

/4/ while(r != Eof){

/5/ if(r.typ == ‘HDR’)

/6/ if(r.src == ‘SAME’)

/7/ A[iA++] = r.Amt;

/8/ else if(r.src == ‘DIFF’)

/9/ B[iB++] = r.Amt;

/10/ else if

/11/

/12/ i++;

/13/ r = inp[i];

/14/ }

/15/}

Key Results – Program specialization

8

S.NO Program # in Main
loop

Functionality
query

% of lines in
specialized

program

1 ACCTRAN 43 Deposit 30%

Withdraw 81%

2 PROG1 410 Edit 23.4%

Update 33.7%

3 PROG2 236 Form 34.3%

Telex 33.9%

Modified 34.4%

4 PROG3 454 TranCopy-1 16.1%

TranCopy-7 4.6%

5 PROG4 5692 NormalAccounts 52.7%

SpecialAccounts 92.3%

Number of lines in
specialized program :

43*0.3 = 13 lines

Percentage of lines in
specialized programs
varies from 4.6% to

92.3%

File format conformance

9

Program
Well-

formed
file

Well-
formed

file

Crash:
Invalid

input file

Warning message :

• Verification Problem : Does program process file correctly ?
• Question : Does program reject any well-formed file ?

Under acceptance error

• Question : Does program process any ill-formed file silently ?

Program
Ill-

formed
file

Message : Input
file processed
successfully

corrupted
output file

Over acceptance error

Results – File format conformance checking

Program
Name

File Conformance warnings

Under acceptance Over acceptance

ACCTRAN 0b 1c

SEQ2000 3c 1c

DTAP 0b 11

CLIEOPP 13a -

PROG1 5 9

PROG2 6 10

PROG3 0b 1

PROG4 0b 10*

10

a) 2 Identified as true positives; i.e. as genuine errors by manual validation (13, 1).
b) 4 Programs have no under acceptance errors (0).
c) 2 programs Identified as false positives; i.e., not errors (3,1,1).

Our analysis is conservative; i.e., it overstates the number of errors

Approximate inter-procedural
(static) analysis using Prefix call

strings

Application layer

Library layer

Inter procedural analysis

12

c4

c1
c2

c3

c5

c6 c7 c8

p1 p2 p3 p4

p5

p6

Precise static
analysis is
ideal across all
parts of the
program. But
it is expensive
and time
consuming.

Existing LibFavor approach spends more
time in analyzing procedures in library
layers. Hence precise in this layer.

Users expect precise analysis
results in procedures in their
application code

Our approach spends more time in analyzing
the procedures in this layer. Therefore more
precise in this layer

1X

1.9X 2X
1.6X

34.7X

8.3X

1.8X

1X
1.5X

2.3X
2.6X

10X

4X
3.4X

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Prog1 Prog2 Prog3 Prog4 Prog5 Prog6 Prog7

Running Time Memory

Key Results – Overall Performance

13

• In 5 programs, on an average, LibFavor approach is 8% more precise than our approach.

• In 2 programs, on an average, our approach is 7.5% more precise than Libfavor approach.

Running time and memory consumption
of LibFavor approach compared to our
approach

• In application level procedures of all 7 programs, on an average, our approach is 1.3%
more precise than LibFavor approach.

Automatic crash testing to detect
buffer overflow errors

Problem statement

• Buffer overflow violations are common in programs that read
data from files or streams.

– For instance, certain versions of httpd crash when the URL
is more than 2000 characters long.

– Buffer overflow violations rank 3rd in the list of top 25 most
dangerous software errors. (http://cwe.mitre.org/top25).

• Our objective is to devise an automated testing tool that tries
to generate test inputs that can crash a given program, by
analyzing the same program.

15

http://cwe.mitre.org/top25

Safe access to this

buffer

Unsafe access to this buffer. It can overflow if the

input contains more than 5 characters of ‘b’

An illustrative example

contains characters ‘a’ from input inp

Contains characters ‘b’ from input inp

/1/void splitstring(char[] inp){

/2/ char A[5], B[5];

/3/ int iA =0, iB=0, i = 0;

/4/ while(inp[i] != ‘\0’){

/5/ if(inp[i] == ‘a’&& iA < 5)

/6/ A[iA++] = inp[i];

/7/ else if(inp[i] == ‘b’)

/8/ B[iB++] = inp[i];

/9/ i++;

/10/ }

/11/}

Systematic test case generation

“aca”

“ada”
“bca”

“bcad”“bba” “bba”

“aaa”

Automatic testing tools can systematically mutate a given seed test input to generate
new test inputs. They run the program with each generated test input and decide to
keep or discard that test input based on a fitness criteria.

Seed input provide by user

• Our approach observes buffers at their access locations in the program, to
measure extent to which they are filled with each muted test input.

• Upon observing this, create more mutant test inputs that fill buffers to a greater
extent.

Our approach

“aca”

“bca”

“bcad”“baa” “bba”

“aaa”

a aA

B

“ada”

b b

aA

B

b

aA

B

a aA

B

b

a aA

B

a a aA

B

b

aA

B

S.No MIT

benchmark

Program Potential

Buffer

overflows

No. Buffer overflows detected

Standard

fuzzing tool

Our

approach

1 sendmail s1 28 10 23

2 sendmail s5 3 0 2

3 bind b4 2 0 2

Preliminary results on MIT benchmark suite

• File processing programs play key role in several domains.
There is a strong need for tool support for file processing
programs to detect bugs and to transform them.

• To this end, our key contribution are :

– An approach to specialize a file processing program based on an
input format specification.

– An approach to verify file processing programs for absence of
file acceptance errors.

– Improve scalability and maintain the precision of of static
analysis by maintaining the analysis information separately at
top level procedures in a multi procedural program.

– Develop an automatic testing tool that can generate crashing
inputs for file processing programs.

Summary

