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Abstract
We propose a trajectory tracking feedback control law for the dynamics of an axis-symmetric rigid body which

is subjected to terminal vectored thrust. The control law exploits the geometric structure of the configuration mani-
fold i.e. SE(3), in order to achieve global stability. The control law is intrinsic to the manifold and is thereby free
from singularities due to Euclidean parameterizations or input-output decoupling maps. The rigid body dynamics
is shown to be differentially flat on the submanifold described by zero axial spin, via the map induced by the Hyu-
gen’s center of oscillation. Based on the principle of immersion and ivariance, a nonlinear proportional derivative
feedback law is designed based on the Riemannian structure of SE(3)/SO(2) i.e. the above submanifold. This is
augmented with a feedback law for the axial torque which renders the invariant submanifold globally stable, with
bounded transients. The overall control law is shown to exponentially stabilize the tracking errors for all initial con-
ditions lying in an open-dense subset of T(SE(3)). The control design is simulated on the dynamics of a tail-sitter
UAV and is shown to execute global, aggressive tracking maneuvers.

Rigid Body Dynamics

mẍ = mge3 + R~f

Ṙ = RΩ̂

JΩ̇ = JΩ× Ω + r[−f2, f1, 0]T + τe3,

(x, ẋ, R, Ω̂) ∈ T (SE(3)),
J = diag(J1, J1, J2)

Huygens Center of Oscillation:

y := x +
J1

rm
Re3

Input Decoupling:

mÿ = mge3 + TR + αΩ3R[Ω1,Ω2, 0]

T = f3 − Ω2
1 − Ω2

2

Control Strategy
1. Ω3 ≡ 0 =⇒ Lie-Backlünd Isomorphic to Brunovsky(y).
2. Design yd(t) corresponding to xd(t), bounded internal dynamics.
3. Globally track y → yd on Ω3 = 0 submanifold.
4. Globally stabilize Ω3 = 0 with bounded transients.

Geometric Control Design

Reduced Attitude Tracking

π : SO(3)→ SO(3)/SO(2)

q := π(R) = Re3, ~r1 = Re1, ~r2 = Re2

q ∈ S2, ~r1, ~r2 ∈ TqS2

q̇ = Ω1~r2 − Ω2~r1

Ω̇1 = U1 + d1(Ω)

Ω̇2 = U2 + d2(Ω)

||d||2 ≤ (||Ω̃||2 + ||Ω̃||22)∆

Configuration error on S2

Ψ(q, qd) = 2− 2√
2

√
1 + qTd q

Ψ(q, qd) ∈ [0, 2],

Ψ(q, qd) = 0 ⇐⇒ q = qd

d1ΨS2(q, qd) =
1

√
2
√

1 + qTd q
q × (q × qd)

eq := d1ΨS2(q, qd)

||eq||22 ≤ Ψ ≤ 2||eq||22, ∀(q, qd) ∈ Ψ−1[0, 2)

Transport velocity error on TS2

TS2(q, qd) : TqdS
2→ TqS2

TS2(q, qd).v = (qd × v)× q, ∀v ∈ TqdS
2,

TS2(q, qd)
∗(d1ΨS2(q, qd)) = −d2ΨS2(q, qd)

eq̇ := q̇ − TS2(q, qd).q̇d

d

dt
Ψ(q, qd) = d1ΨS2(q, qd)eq̇

eq̇ → −kqg](d1ΨS2), kq > 0

Torque Feedback

eΩ := ([Ω1,Ω2]T −
[
〈~r2, (TS2(q, qd).q̇d − kqd1ΨS2)〉
〈−~r1, (TS2(q, qd).q̇d − kqd1ΨS2)〉

]
U∆ =


eΩ

||eΩ||2
, ||eΩ||2 > tol

eΩ

tol
, ||eΩ||2 ≤ tol



U(R,Ω, t) := −α
[
〈d1ΨS2, ~r2〉
〈d1ΨS2,−~r1〉

]
− kΩeΩ

+Ω̇d − U∆(||Ω̃||2 + ||Ω̃||22)∆,

τ := (−k3 − k2(||U ||2 + ∆))Ω3

Saturated Thrust Feedback
Linear Saturation Function:

sσ(s) > 0, ∀s 6= 0

σ(s) = s, ∀|s| ≤ a

|σ(s)| ≤ b, ∀s ∈ R

Commanded Vector Thrust:

f̂ = σ̄(ex, ev) + fd
fd = mẍd + mge3,

qd =
f̂

||f̂ ||2
T = H(〈f̂ , Re3〉)

σ̄(ex, ev) = −



σ2

(
k1
k2
ev1 + σ1

(
k2mev1 + k1ex1

))

σ2

(
k1
k2
ev2 + σ1

(
k2mev2 + k1ex2

))

σ2

(
k1
k2
ev3 + σ1

(
k2mev3 + k1ex4

))


,

b2 < inf
t>0
{||fd(t)||∞}

Spherical Tailsitter Drone

Trajectory tracking simulation

Conclusions

• Proposed control law free of parameterization singularities

•Global trajectory tracking at Exponential Rate

• Thrust constraints are intrinsically handled

• Robust to bounded uncertainties

•Need to augment with high-bandwidth state-estimators
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Rigid Body Dynamics With SO(2) Symmetry

mẍ = mge3 + R~f

Ṙ = RΩ̂

JΩ̇ = JΩ× Ω + r [−f2, f1, 0]T + τe3,

(x , ẋ ,R , Ω̂) ∈ T (SE (3)),
J = diag(J1, J1, J2)

(1)

Input-coupling=nonminimum phase system!
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Hover-Eye Drone

I Propeller induced airflow exerts dynamic pressure on
control surfaces

I Control surfaces deflect to generate moments
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Japanese Flying Sphere

I Two sets of Control Vanes
I Lower CG, Better Stability
I Inefficient aerodynamic design
I Smaller moment arm= Lower agility
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The Sphere-Drone

I Exploits flat-plate aerodynamics in cruise flight

I Capable of rapid transition from hover to cruise mode

I Resistant to collisions, usable in cluttered environment
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Novelty of Proposed Controller

I Intrinsic on SE (3) without Euclidean parameterization

I Global tracking at exponential rate

I Incorporates positive-thrust constraint in mathematical
design

I Existing controllers have very conservative region of
stability
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Input Decoupling via Differentially Flat outputs
Original Equations:

mẍ = mge3 + R~f

Ṙ = RΩ̂

JΩ̇ = JΩ× Ω + r [−f2, f1, 0]T + τe3

(2)

Huygens center of oscillation:

y := x +
J1

rm
Re3 (3)

Transformed Dynamics:

mÿ = mge3 + TR + αΩ3R[Ω1,Ω2, 0]

Ṙ = RΩ̂

JΩ̇ = JΩ× Ω + r [−f2, f1, 0]T + τe3,

T = f3 − Ω2
1 − Ω2

2

(4)
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Ṙ = RΩ̂

JΩ̇ = JΩ× Ω + r [−f2, f1, 0]T + τe3

(2)

Huygens center of oscillation:

y := x +
J1

rm
Re3 (3)

Transformed Dynamics:
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mẍ = mge3 + R~f
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Immersion and Invariance Principle

mÿ = mge3 + TR + αΩ3R[Ω1,Ω2, 0]

Ṙ = RΩ̂

JΩ̇ = JΩ× Ω + r [−f2, f1, 0]T + τe3,
(5)

I Ω3 ≡ 0 =⇒ Decoupled Dynamics

I Lie-Back̈lund isomorphic to Brunovsky form in y

I Design flat-output trajectory yd w.r.t xd

I Globally stabilize y → yd on Submanifold Ω3 = 0 (Use
T , f1, f2 )

I Globally stabilize submanifold Ω3 = 0 (Use τ)
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Reduced Attitude Dynamics on Ω3 = 0

q = Re3,~r1 = Re1,~r2 = Re2

q̇ = Ω1~r2 − Ω2~r1

Ω̇1 = U1 + d1(Ω)

Ω̇2 = U2 + d2(Ω)

q ∈ S2, ~r1,~r2 ∈ TqS2 (6)

||d ||2 ≤ (||Ω̃||2 + ||Ω̃||22)∆ (7)
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Reduced Attitude Error

Tracking Error via Geodesic Flow on S2

Ψ(q, qd) = 2− 2√
2

√
1 + qT

d q (8)

Ψ(q, qd) ∈ [0, 2],

Ψ(q, qd) = 0 ⇐⇒ q = qd

(9)

Attitude Error Vector:

d1ΨS2(q, qd) =
1

√
2
√

1 + qT
d q

q × (q × qd) (10)

eq := d1ΨS2(q, qd) (11)
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Reduced Attitude Error

Lemma

||eq||22 ≤ Ψ ≤ 2||eq||22, ∀(q, qd) ∈ Ψ−1[0, 2) (12)
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Velocity Error via Transport Map

TS2(q, qd) : Tqd
S2 → TqS2

TS2(q, qd).v = (qd × v)× q, ∀v ∈ Tqd
S2 (13)

Lemma
The pull-back of the transport map T satisfies the equation:

TS2(q, qd)∗(d1ΨS2(q, qd)) = −d2ΨS2(q, qd) (14)

12 / 24



Velocity Error via Transport Map

TS2(q, qd) : Tqd
S2 → TqS2

TS2(q, qd).v = (qd × v)× q, ∀v ∈ Tqd
S2 (13)

Lemma
The pull-back of the transport map T satisfies the equation:

TS2(q, qd)∗(d1ΨS2(q, qd)) = −d2ΨS2(q, qd) (14)

12 / 24



Reduced Attitude Error Dynamics

Transported Differential Velocity:

eq̇ := q̇ − TS2(q, qd).q̇d (15)

d

dt
Ψ(q, qd) = d1ΨS2(q, qd)q̇ + d2ΨS2(q, qd)q̇d

= d1ΨS2(q, qd)eq̇ (16)

Desired Dynamics:

eq̇ = −kqg ](d1ΨS2), kq > 0 (17)

13 / 24



Desired Angular Velocity

Ω1~r2 − Ω2~r1 = TS2(q, qd).q̇d − kqd1ΨS2 (18)

Since span {~r1,~r2} = TqS2, the above equation admits a
unique solution for Ω1 and Ω2

Ωd =

[
〈~r2, (TS2(q, qd).q̇d − kqd1ΨS2)〉
〈−~r1, (TS2(q, qd).q̇d − kqd1ΨS2)〉

]
(19)

eΩ := ([Ω1,Ω2]T − Ωd),

Robustifying Component:

U∆ =


eΩ

||eΩ||2
, ||eΩ||2 > tol

eΩ

tol
, ||eΩ||2 ≤ tol

 (20)
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Reduced attitude tracking control law
Theorem
Given a reference trajectory qd(t) which is smooth with
bounded derivatives, the control law:

U(R ,Ω, t) := −α
[
〈d1ΨS2 ,~r2〉
〈d1ΨS2 ,−~r1〉

]
− kΩeΩ

+Ω̇d − U∆(||Ω̃||2 + ||Ω̃||22)∆, (21)

ensures that eq and eΩ exponentially converge to an arbitrarily
small open neighborhood of the origin, for all initial conditions
in the open-dense sublevel set Ψ−1[0, 2) satisfying:

||eΩ(0)||2 < 2α(2−Ψ(0)). (22)

Further, the sublevel set Ψ−1[0, 2) remains invariant under the
flow of (6).
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Position Tracking with Saturated Thrust

Definition
Given constants a and b such that 0 < a ≤ b, a function
σ : R→ R is said to be a smooth linear saturation function
with limits (a, b), if it is smooth and satisfies:

1. sσ(s) > 0, ∀s 6= 0

2. σ(s) = s, ∀|s| ≤ a

3. |σ(s)| ≤ b, ∀s ∈ R

Let σ1 and σ2 be two saturation functions with limits (a1, b1)
and (a2, b2) such that,

b1 <
a2

2
. (23)

Translational Errors: ex := x − xd , ev = ẋ − ẋd
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Commanded Thrust Vector

f̂ = σ̄(ex , ev ) + fd (24)

fd = mẍd + mge3, (25)

σ̄(ex , ev ) = −



σ2

(
k1

k2
ev1 + σ1

(
k2mev1 + k1ex1

))

σ2

(
k1

k2
ev2 + σ1

(
k2mev2 + k1ex2

))

σ2

(
k1

k2
ev3 + σ1

(
k2mev3 + k1ex4

))


,

(26)
and k1, k2 are positive constants.
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Overall stability with bounded attitude Error

Lemma
Let σ1 and σ2 be saturation functions with limits as prescribed
in (23). Then, the trajectories of the system

ẏ1 = y2

mẏ2 = −σ2((k1/k2)y2 + σ1(k1y1 + k2my2)) + ξ(t),

enter the linear region of σ1 and σ2 in a finite time t2 and
remain within thereafter if,
|ξ(t)| < min ((a2/2)− b1, a1), ∀t > 0.
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Feedback Law for Pseudo-Thrust T

qd =
f̂

||f̂ ||2
(27)

Choose:
b2 < inf

t>0
{||fd(t)||∞}.

Thrust feedback Law:

T = H(〈f̂ ,Re3〉). (28)
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Exponential Tracking on SE (3)

Theorem
Consider the control law for U and T as given in (21) and
(28) such that the condition (22) is satisfied. Further, define
the feedback law for the axial Torque as

τ := (−k3 − k2(||U ||2 + ∆))Ω3 (29)

Define the matrices:

W1 =

[
ckx

m
(1− sin(θ0)) − ckv

2m
(1 + sin(θ0))

− ckv

2m
(1 + sin(θ0)) kv (1− sin(θ0))− c ,

]
,

W2 = 2

(c/m)||fd ||2 0

a1 + ||fd ||2 0

 , (30)
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Given 0 < kx := k1, 0 < kv := (k1/k2) + k2, and θ0 < π/2, we
choose positive constants c , kq, kΩ, such that

c < min

{
kxkv (1− sin(θ0))

2

(
kx +

k2
v (1 + sin(θ0)

2)

4m

)−1

,

kv (1− sin(θ0)),
√

kx/m

}
, and

min (αkq, kΩ) >
4||W2||2

λmin(W1)
. (31)

Then, the tracking errors ex , ev , eq, eΩ, exponentially
converge to an arbitrarily small open neighborhood of the
origin, for all initial conditions lying in an open-dense subset.
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Trajectory Tracking

Figure: Trajectory tracking post
recovery from inverted pose

Figure: Exponentially attractive
position tracking error
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Trajectory tracking

Figure: Reduced attitude error Figure: Thrust and Torque inputs
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Conclusion

I Proposed control law free of parameterization singularities

I Global trajectory tracking at Exponential Rate

I Thrust constraints are intrinsically handled

I Robust to bounded uncertainties

I Need to augment with high-bandwidth state-estimators
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