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Abstract
We propose a trajectory tracking feedback control law for the dynamics of an axis-symmetric rigid body which < 1 U 7 >
1s subjected to terminal vectored thrust. The control law exploits the geometric structure of the configuration mani- U ( R, €, t) = —( [ 1¥8% % ] — kQEfQ 9
fold i.e. SE(3), in order to achieve global stability. The control law is intrinsic to the manifold and is thereby free (d1¥s2, —77) 7= (k3 — ko(||U|]" + A))823

from singularities due to Euclidean parameterizations or input-output decoupling maps. The rigid body dynamics : ~ ~ 9
is shown to be differentially flat on the submanifold described by zero axial spin, via the map induced by the Hyu- ‘|‘Qd - U A(’ |Q| ’2 + ‘ ’Q| ‘2>A7
gen’s center of oscillation. Based on the principle of immersion and ivariance, a nonlinear proportional derivative
feedback law is designed based on the Riemannian structure of SFE(3)/S0O(2) i.e. the above submanifold. This is

augmented with a feedback law for the axial torque which renders the invariant submanifold globally stable, with Saturated Thrust Feedback
bounded transients. The overall control law is shown to exponentially stabilize the tracking errors for all initial con-
ditions lying in an open-dense subset of T(SE(3)). The control design is simulated on the dynamics of a tail-sitter Linear Saturation Function:
UAV and i1s shown to execute global, aggressive tracking maneuvers. _ -
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o 17112 by < int {11 fu®)lloc}
(z,2, R, Q) € T(SE(3)), T = H((f, Re3))

J = diag(J1, J1, Jo)

Spherical Tailsitter Drone

Huygens Center of Oscillation: Input Decoupling: ‘
L X
L ip mij = mges + TR + aQ3 R, Qy, 0] '
=2+ —Re
Y rm O T = fs — Q% _ Q%
Control Strategy

1.3 = 0 = Lie-Backliind Isomorphic to Brunovsky(y).

2. Design y,4(t) corresponding to x (), bounded internal dynamics.
3. Globally track y — y,; on {23 = 0 submanifold.

4. Globally stabilize €23 = 0 with bounded transients.
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Conclusions
Tse(q, 4q)-v = (qq X v) X ¢, Vo € Ty, S, d _ |
dt\wq’ 9a) = d1¥s2(4, 4a)eq e Proposed control law free of parameterization singularities
S M
Ts2(q, qq)" (d1Vs2(q, qd)) = —doVe2(q, qd) e — —hqg (d1Vs2), kg >0 e Global trajectory tracking at Exponential Rate
e Thrust constraints are intrinsically handled
Torque Feedback d
e Robust to bounded uncertainties
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Rigid Body Dynamics With SO(2) Symmetry

mx = mge; + Rf
| R = RQ
JQ = JQ x Q+r[—f2,f1,O]T+Tes,

(x, %, R, Q) € T(SE(3)),
J= diag(Jl, Jl, _/2)

Input-coupling=nonminimum phase system!



Hover-Eye Drone

Upper center body

Propellers

Duct

Lower center body

Control surfaces

Landing ring

» Propeller induced airflow exerts dynamic pressure on

control surfaces
» Control surfaces deflect to generate moments
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Japanese Flying Sphere

Spherical Frame

Propulsion

Top Control Vane — -~ L%

Bottom Control Vane - ol

» Two sets of Control Vanes

» Lower CG, Better Stability

» Inefficient aerodynamic design

» Smaller moment arm= Lower agility



The Sphere-Drone

» Exploits flat-plate aerodynamics in cruise flight
» Capable of rapid transition from hover to cruise mode

» Resistant to collisions, usable in cluttered environment
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Novelty of Proposed Controller

Intrinsic on SE(3) without Euclidean parameterization

v

v

Global tracking at exponential rate

v

Incorporates positive-thrust constraint in mathematical
design

Existing controllers have very conservative region of
stability

v



Input Decoupling via Differentially Flat outputs
Original Equations:
mx = mges + Rf
R = R (2)
JQ=JQA X Q4 r[—f, 7,0]7 + Te;



Input Decoupling via Differentially Flat outputs
Original Equations:
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Input Decoupling via Differentially Flat outputs
Original Equations:

mx = mges + Rf
_ R = R (2)
JQ=JAxQ+r[-h,f{,0]" + 7Tes3

Huygens center of oscillation:
J
Y =X+ —Re; (3)
rm
Transformed Dynamics:

my = mge3 + TR == &Q3R[Ql,Q2,0]
_ R = R
JQ=JA X Q+r[—f, {,0]" + Te3, (4)

T = f3 O SNG



Immersion and Invariance Principle

my = mges + _TR + aQ3R[Q4, 2y, 0]
_ R = RQ
JQ=JQ X Q+r[-f, £,0]T + Tes,

Q23 =0 = Decoupled Dynamics
Lie-Backlund isomorphic to Brunovsky form in y

Design flat-output trajectory yy w.r.t x4

vV v v VY

Globally stabilize y — y4 on Submanifold Q3 = 0 (Use
T h,5)

Globally stabilize submanifold 23 = 0 (Use 7)

v



Reduced A




Reduced Attitude Dynamics on Q23 =0

q= Re37r1

Rei, > = Re;
i, — on
U + di(Q)
U, + dx()

0 = 2
S°, A, R e TS



Reduced Attitude Dynamics on Q23 =0

q= Re37r1

Rei, > = Re;
i, — on
U + di(Q)
U, + dx()

0 = 2
S, A, Khe TS

d]]2 < (122 + 1Q]12)A



Reduced Attitude Error

Tracking Error via Geodesic Flow on S?



Reduced Attitude Error

Tracking Error via Geodesic Flow on S?

V(q,qq4) € [0,2],

(9)
V(q,q94) =0 <= g=qq
Attitude Error Vector:
1
diVs(q, qd) = mq X (q X qq) (10)
d

e = diVs2(q, qd) (11)



Reduced Attitude Error

Lemma

llegll3 < W < 2llegll3, (g, q0) € WTH0,2)  (12)



Velocity Error via Transport Map

Ts2(q, Ga) : Tg,S? — T,S?

Ts2(q, qa).v = (qa X v) X q, Vv € Ty, S (13)



Velocity Error via Transport Map

Ts2(q, qq) : quS2 — Tq82

Ts2(q, qa).v = (qa X v) X q, Vv € Ty, S (13)

Lemma
The pull-back of the transport map T satisfies the equation:

T(q, qq)" (1 Vs2(q, gd)) = —drVs2(q, qd) (14)



Reduced Attitude Error Dynamics

Transported Differential Velocity:
&5 = g — Ts2(q, 94)-qua (15)

d : )
—V(q,qq4) = diVs(q,q4)q + bVs(q, 94)qq

dt
= diVs(q, qu)e; (16)
Desired Dynamics:

ey = —kog*(diVs), ky >0 (17)



Desired Angular Velocity

11 — Dh = Ts2(q, qa)-Ga — kgdi Ve (18)
Since span {F, i} = T,S? the above equation admits a
unique solution for Q; and £2,

_’7 Tz(qa qd)‘dd i k dlw 2))
Q, = <r2_,( S / q S 19
= (R, (Telq) auh A, .. )) (19)

en = ([Ql,Qz]T—Qd),



Desired Angular Velocity

11 — Dh = Ts2(q, qa)-Ga — kgdi Ve (18)
Since span {F, i} = T,S? the above equation admits a
unique solution for Q; and £2,

Q, — (P2, (752(q, Gq)-Ga — kqchVs2)) (19)
(=11, (752(q, Ga)-Ga — kgdhVs2))

en = ([Ql,Qz]T—Qd),

Robustifying Component:

2 leqll> > tol
|| eall
Un = (20)
92 leq]ls < tol



Reduced attitude tracking control law

Theorem
Given a reference trajectory q4(t) which is smooth with
bounded derivatives, the control law:

diVs2, I
U(R,Q, t)i= " =a {(511;’528 ,_r;i)] — kaeg
+q = Ua(l1Q1]2 + 12154, (21)

ensures that e, and eq exponentially converge to an arbitrarily
small open neighborhood of the origin, for all initial conditions
in the open-dense sublevel set V[0, 2) satisfying:

|lea(0)[l2 < 2a(2 — W(0)). (22)

Further, the sublevel set W=t[0,2) remains invariant under the
flow of (6).



Position Tracking with Saturated Thrust

Definition
Given constants a and b such that 0 < a < b, a function
0 :R — R is said to be a smooth linear saturation function
with limits (a, b), if it is smooth and satisfies:
1. so(s) >0, Vs #0
2. o(s)=s, V|s| < a
3. lo(s)| < b, VseR



Position Tracking with Saturated Thrust

Definition
Given constants a and b such that 0 < a < b, a function
0 :R — R is said to be a smooth linear saturation function
with limits (a, b), if it is smooth and satisfies:
1. so(s) >0, Vs #0
2. o(s)=s, V|s| < a
3. lo(s)| < b, VseR

Let o1 and o, be two saturation functions with limits (ay, by)
and (ay, by) such that,

a
i << 52 (23)

Translational Errors: e, := x — x4, 6, = X — Xy



Commanded Thrust Vector
F= o(ex,e,) + fq

fa = mxq + mges,

02 (%evl + 01 (kZmevl = klexl)>

a(es,e) =— o (’;—;ev2 + o1 (kgme\,2 + kleX2)>

(P (%ev3 + 01 (k2m6V3 aF klex4)>

and ky, ky are positive constants.

(24)

(25)



Overall stability with bounded attitude Error

Lemma
Let o1 and o, be saturation functions with limits as prescribed
in (23). Then, the trajectories of the system

yi = y
my, = —o03((ki/ka)y> + o1(kiys + komyn)) + &(t),
enter the linear region of o1 and o, in a finite time t, and

remain within thereafter if,
€(8)] < min ((a2/2) — by, ), VE > 0.



Feedback Law for Pseudo-Thrust T

>

dd = —=
|1]l2

Choose:
by < inf{[[fa(t)[[oo}-

Thrust feedback Law:

T = H((f,Res)).

(27)



Exponential Tracking on SE(3)

Theorem

Consider the control law for U and T as given in (21) and
(28) such that the condition (22) is satisfied. Further, define
the feedback law for the axial Torque as

Define the matrices:
W, — %(1 — sin(6y)) —‘2:—’,‘;(1 + sin(6p))
. —g—’,‘;(l +sin(fo)) k(1 —sin(6p)) —c,|’
(c/m)|fall2 0O
W, = 2

, (30)
a1+ ||fal[l2 0



Given 0 < kx = k]_, 0< kv = (k]_/kQ) aF k2, and 90 < 71'/2, we
choose positive constants ¢, kg, ko, such that

K2(1 +Sin(90)2)>1

4dm

c< min{ kyk, (1 — sin(6g))? <kx +

ky(1 —sin(0o)), \/ k«/m }, and

4|Wa|?

min (Oékq, kQ) > W
min

(31)
Then, the tracking errors e, e,, €4, €n, exponentially
converge to an arbitrarily small open neighborhood of the
origin, for all initial conditions lying in an open-dense subset.
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Figure: Reduc




Conclusion

» Proposed control law free of parameterization singularities

v

Global trajectory tracking at Exponential Rate
» Thrust constraints are intrinsically handled

» Robust to bounded uncertainties

v

Need to augment with high-bandwidth state-estimators



