
Program Analysis to Support Allocation Site based Refactorings
Girish Maskeri Rama

Advisor: Dr. K. V. Raghavan

public class Main {

public A field1; //Let classes D and E be subclasses of A

public static void main(String[] args) {

Main m1 = new Main(); Main m2 = new Main();

C c1 = m1.meth(); C c2 = m2.meth();

c1.field1 = new D(); c2.field1 = new E();

A v2 = (D) c1.field1;

A v3 = (D) c2.field1;

}

private C meth(){ return new C(); }}

Safe downcast

Unsafe downcast

How to identify

potentially

unsafe downcast

expressions?

How?

Existing
system

How to
eliminate
repeated

computation?

How to
reduce

Memory
bloat

Cache results of methods

Detect opportunities
to cache constructors

Detect opportunities
to cache methods

Problem Approach

Cache(memoize)
Created objects

What are the necessary
and sufficient

conditions for caching?

Contribution 1: Detecting Opportunities for Object-sharing Refactoring

Contribution 2: Static analysis to support allocation site refactorings

Contribution 3: An improved scalable, iterative pointer analysis

Problem Statement: A static analysis approach to conservatively over-approximate flows of objects into

object references, and hence identify object references that can potentially suffer runtime exceptions of certain

kinds.

Our contribution: A scalable iterative form of points-to analysis that scales to large programs.

Initial iterations use inexpensive abstractions.

Later iterations use expensive and precise abstractions, but are targeted only at object references that did

not get verified in the initial iterations.

Summary of results: For Sunflow, PMD and Chart, compared to the standard obj-sensitivity approach the

reduction in running time is 75.5%, 39.6% and 8% respectively. Precision improvement is 0%, 2% and 9.4%

respectively.

A = new …..

10000 Instances

10

“arial” obj1

Profitable
Allocation site

10

“TNR” obj1

10000 Instances 10000 Instances

10

“serif” obj1

Equivalence class1 Equivalence class 2 Equivalence class 3

Only 3 instances in
heap!

Saving: (30000-3) *
SIZE

B = new …..

1Instance

obj1

Non-Profitable
Allocation site

1 Instance
1 Instance

Equivalence class1 Equivalence class 2

No saving: All 30000
instances in heap +
caching overhead.

10

obj2

10

Obj
30000

10

Problem Statement: Detect profitable allocation sites among thousands of allocation sites efficiently.

Our contribution: A dynamic analysis to detect opportunities for object-sharing refactoring.
• Computes Isomorphism equivalence classes of objects created at the selected sites.
• Reports estimated memory savings due to object-sharing refactoring
Publication: “A dynamic analysis to support object-sharing code refactorings “, Girish Maskeri Rama and Raghavan
Komondoor, In Proceedings of the 29th ACM/IEEE international conference on Automated software engineering (ASE
'14),2014.

Summary of results:
• 8 Dacapo systems + 2 systems (Apache FOP and PDFBox) with user introduced object sharing.
• Estimated savings (cumulative) varies 6% to 37% of tenured heap.
• Detected 10 out of 14 sites cached by the developer
• Identified a user introduced unsafe caching as actually unsafe.

Class A{

Bar foo(Object
arg){

for(int i; …..){

Bar b = new
Bar(arg);

b.attr1 = 5;

global[i] = b

}

return b;

}}

Class A{

HashMap<B,B> h = new HashMap<B,B>();

Bar foo(Object arg){

for(int i; …..){

Bar b = new Bar(arg);

b.attr1 = 5;

if(h.get(b) != null)
b = h.get(b);

else{
h.put(b,b);

}

global[i] = b

}

return b;

}}

Insert code
after
object is

fully
initialized

but
before it

escapes!

Problem Statement: identify program points where created object is fully initialized but has not yet escaped (If such a point exists).

Our contribution: A Static Analysis to Identify Location to Introduce Caching
For a given allocation site:

Identifies the last statement that mutates the created object across all paths from the allocation site to the end of
the method.
If there exists a IVP from the last mutating statement to the statement where object escapes then no location
exists.
If the site is in a loop and there exists a loop carried value flow

Soundness Guarantee : Across all runs of the program, all objects allocated at the allocation site are fully initialized at the caching
location.

Summary of results: Memory reduction obtained in 5, 21, 6 and 5 sites for antlr, pmd, Apache fop and PDFbox respectively.

Program Analysis to Support
Allocation Site based

Refactorings

Girish Maskeri Rama

Advisor: Dr. K V Raghavan

1

Problem: Runtime Memory Bloat due to Isomorphic Object
Graphs

2

B = new …..

Instance 1 Instance 2 Instance 10000

5

“Str1” obj1

5

“Str1” obj1

5

“Str1” obj1

Object-sharing refactoring : Cache and share long-
lived isomorphic objects

(instead of creating new objects every time)

Allocation
site

Java Heap

Object-sharing refactoring : “Introduce Cache”

3

Class A{ Class A{

HashMap h = new HashMap();

Bar foo(Object arg){ Bar foo(Object arg){

if(h.get(arg) != null)

return h.get(arg);

else{

return new Bar(arg); bar b = new Bar(arg);

h.put(arg,b);

return b;

}

} }

} }

Pre Post

Creates isomorphic
objects

Thesis Overview

• An approach to identify, check safety and automate
Object-sharing refactoring

• Contribution 1: Detecting Opportunities for Object-
sharing Refactoring

• Contribution 2: Static analysis to support allocation
site refactorings

• Contribution 3: An improved pointer analysis for
checking ValueObject sites

4

Contributions 2 & 3 have applications other then object-sharing
refactoring.

5

Contribution 1: Detecting Opportunities
for Object-sharing Refactoring

Detecting Opportunities for Object-sharing Refactoring

6
Equivalence class 30000

A = new …..

10000 Instances

10

“arial” obj1

Profitable
Allocation site

10

“TNR” obj1

10000 Instances 10000 Instances

10

“serif” obj1

Equivalence class1 Equivalence class 2 Equivalence class 3

Only 3 instances in
heap!

Saving: (30000-3) *
SIZE

B = new …..

1Instance

obj1

Non-Profitable
Allocation site

1 Instance
1 Instance

Equivalence class1 Equivalence class 2

No saving: All
30000 instances in

heap + caching
overhead.10

obj2

10

Obj
30000

10

Detecting Opportunities for Object-sharing Refactoring

7

Problem: Detect profitable allocation sites
among thousands of allocation sites efficiently.

Our Contribution

• A dynamic analysis to detect opportunities for
object-sharing refactoring.

– Computes Isomorphism equivalence classes of objects
created at the selected sites.

– Reports estimated memory savings due to object-sharing
refactoring

• Publication: “A dynamic analysis to support object-sharing
code refactorings “, Girish Maskeri Rama and Raghavan
Komondoor, In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering
(ASE '14),2014.

8

Results

• 8 Dacapo systems + 2 systems (Apache FOP
and PDFBox) with user introduced object
sharing.

• Estimated savings (cumulative) varies

– 6% to 37% of tenured heap.

• Detected 10 out of 14 sites cached by the
developer

• Identified a user introduced unsafe caching as
actually unsafe.

9

10

Contribution 2: Static analysis to support
allocation site refactorings

Where to Insert Code for Object Sharing?

11

Class A{

Bar foo(Object arg){

for(int i; …..){

Bar b = new Bar(arg);

b.attr1 = 5;

global[i] = b

}

return b;

}}

Global
variable

Class A{

HashMap<Object,B> h = new HashMap<Object,B>();

Bar foo(Object arg){

for(int i; …..){

Bar b;
if(h.get(arg) != null)

b = h.get(arg);
else{

b = new Bar(arg);
h.put(arg,b);

}

b.attr1 = 5;

global[i] = b

}

return b;

}}

Created Object
is mutated

object escapes

Problem: UNSAFE!
Cached object is

mutated.

Insert code
at allocation

site.

Where to Insert Code for Object Sharing?

12

Class A{

Bar foo(Object arg){

for(int i; …..){

Bar b = new Bar(arg);

b.attr1 = 5;

global[i] = b

}

return b;

}}

Class A{

HashMap<B,B> h = new HashMap<B,B>();

Bar foo(Object arg){

for(int i; …..){

Bar b = new Bar(arg);

b.attr1 = 5;

global[i] = b

}

if(h.get(b) != null)
b = h.get(b);

else{
h.put(b,b);

}

return b;

}}

object escapes

Problem: Not
Profitable!

created object
escapes.

Insert code
before return.

Where to Insert Code for Object Sharing?

13

Class A{

Bar foo(Object arg){

for(int i; …..){

Bar b = new Bar(arg);

b.attr1 = 5;

global[i] = b

}

return b;

}}

Class A{

HashMap<B,B> h = new HashMap<B,B>();

Bar foo(Object arg){

for(int i; …..){

Bar b = new Bar(arg);

b.attr1 = 5;

if(h.get(b) != null)
b = h.get(b);

else{
h.put(b,b);

}

global[i] = b

}

return b;

}}

Correct: Insert
code *after*
object is fully
initialized but

before it
escapes!

Where to Insert Code for Object Sharing?

14

…
ClassA c;
for(...){

v1 = new ClassA();
if(*)

c = v1;

c.attr1 = 10;

global[i] = c;

}
…

Loop carried
value flow

Object is not fully initialized.
An allocated object in current iteration could get

mutated in subsequent iteration

No location exists where cache
look-up code can be inserted!

Created object has escaped. So not profitable.

Problem Statement: identify program points where created object is fully
initialized but has not yet escaped (If such a point exists).

Our Contribution: A Static Analysis to Identify Location to
Introduce Caching

15

For a given allocation site:
– Identifies the last statement that mutates the created object across all

paths from the allocation site to the end of the method.

– If there exists a IVP from the last mutating statement to the statement
where object escapes then no location exists.

– If the site is in a loop and there exists a loop carried value flow

Soundness Guarantee : Across all runs of the program,
all objects allocated at the allocation site are fully initialized
at the caching location.

Other Applications of Finding Location where Object is Fully
Initialized.

• Refactoring for immutability

• Refactoring to introduce factory method

16

Results

• Refactoring to introduce caching
– Memory reduction obtained in 5, 21, 6 and 5 sites for antlr, pmd,

Apache fop and PDFbox respectively.

17

18

Contribution 3: An Improved Pointer
Analysis for checking ValueObject Sites

Object Mutations In Rest of Program can make Caching Unsafe

19

Class A{

Bar foo(Object arg){

Bar b = new Bar(arg);

b.attr1 = 5;

return b;

}

….

Bar ret = foo(o);

ret.attr1=10

……

Object mutated
in client.
So cannot be cached!

Non-local: Mutations can
happen anywhere
in the Program.

Objective: To identify whether in any run an object allocated at a site where
caching is to be inserted is modified later in the program.

The Problem of Points-to Analysis

• Points-to analysis
– The goal of pointer analysis is to compute an approximation of the set

of symbolic objects that a pointer variable can refer to.

– Well studied problem with rich literature.

– In our application we use points-to analysis to determine if an object is
mutated anywhere in the program.

– Numerous other applications: Call graph, construction, Dependence
analysis and optimization, Cast check elimination, Side effect analysis,
Escape analysis, Slicing, Parallelization etc.

• Problem of Points-to Analysis
– Precision depends on the extent of context-sensitivity employed (i.e.

value of ‘K’)

– Default object-sensitivity pointer analysis does not scale for ‘K’ > 2.

20

Our Contribution

• A scalable, client-driven, iterative form of points-to analysis
that scales to large programs.

• Key idea:
– Initial iterations use inexpensive abstractions (smaller values of ‘k’ but

at larger number of sites).

– Later iterations use expensive and precise abstractions. (i.e. Higher
values of ‘k’)

– But are targeted only at object references that did not get verified in
the initial iterations.

21

Results

For Sunflow, Chart and PMD, compared to the
existing standard objective-sensitivity approach
with k=3, the reduction in running time is 40%,
25% and 18% respectively. precision of our
approach is same as obj-sensitivity approach on
each benchmark.

22

23

Thank You. Questions?

