Oa

* Whole program structure
can be utilized to reduce it.

<+ Results in lower runtime
overhead.

Finding minimum number of instrumentation

points in the program to derive precise the Whole
Program Path (WPP).

+ Existing approaches perform :
redundant instrumentations.

Efficient Whole Program Path Tracing

Sridhar Gopinath, Murali Krishna Ramanathan
Indian Institute of Science

4 paths are identified by the
. edges 5, 6,9 and empty-log.

Instrumented
Program | — | Instrumenter | —
program
: l Execute
v
@ < Regenerator | < @
Complete Partial
trace trace
Instrumenter Regenerator

e e e e

ro‘o

* I[dentify edges to instrument

—

% Instrumentation to emit edge

| identifier

|
|
]

<+ Save information for

regeneration

L e e e S — e S ——————

ro‘o

* Generate complete trace
using partial trace |

|
|
i P
|
|

< Use information from |

instrumenter for
| regeneration

“‘O ,

A2 Y
f’ ($)) ‘QQ
SR VY
LW

“‘ “’,

A=Y

&

Suresh Jagannathan
Purdue University

B e
= =

’Q{ Conflict set, C =
Q { Blue edges }
c
U
Q Q%q { Red edges |.
Q Q Q Q Instrumenting any e € C can

distinguish between red and

blue path.
C1=@ . 0 © P

=0 00
=000 0
c4=9 © ©

* Contflict sets are created for
the entire program.

* The minimum hitting set
of the conflict sets is the set
of instrumentation points.

Minimum hitting set is,

H= @ ©

* Handling intersecting paths: We define merge points
which are used to create conflict sets.

* Handling loops in CFGs: Loop transtormation to convert
cyclic CFG to acyclic CFG.

* Handling path enumeration: Approximations are used to
reduce the number of conflict sets generated.

()~

% Instruments 9% of total edges on average
* Incurs 97% runtime overhead on average

» Any optimal instrumentation approach
incurs at least 71% overhead

e State of the art incurs 278% overhead

Instrumentation points

100

75

50

% branch edges instrumented

25

Runtime overhead

L e

75

50

25 |

Normalized % of overhead incurred

Benchmark Benchmark

