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* Whole program structure
can be utilized to reduce it.

<+ Results in lower runtime
overhead.

Finding minimum number of instrumentation

points in the program to derive precise the Whole
Program Path (WPP).

+ Existing approaches perform :
redundant instrumentations.
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4 paths are identified by the
. edges 5, 6,9 and empty-log.
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* Contflict sets are created for
the entire program.

* The minimum hitting set
of the conflict sets is the set
of instrumentation points.

Minimum hitting set is,
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* Handling intersecting paths: We define merge points
which are used to create conflict sets.

* Handling loops in CFGs: Loop transtormation to convert
cyclic CFG to acyclic CFG.

* Handling path enumeration: Approximations are used to
reduce the number of conflict sets generated.
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% Instruments 9% of total edges on average
* Incurs 97% runtime overhead on average

» Any optimal instrumentation approach
incurs at least 71% overhead

e State of the art incurs 278% overhead
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