
Techniques to Improve the Reliability of Software Applications
Monika Dhok

Advisor : Murali Krishna Ramanathan
Department of Computer Science and Automation

Automated Barrier Inference for Performance Improvement [ISSTA’15]

Deterministic Multithreaded System
Input Schedules

Ease bug reproduction

i1

i2

i3

s1

s2

s3

Inefficient

May choose inefficient schedule s2
for the given input.

Proposed an approach to insert barriers in the program for performance
improvement. Observed improvement ranging from 38-88%.

s1

s2

s3

Type-aware Concolic Testing of JavaScript programs [ICSE’16]

x = U

p = U

x = U

p = {}

x = U

p = {bar : F}

x = N

p = U

x = N

p= { }

x = N

p.bar = U

p = {bar : F}

L1 : function bar (x, p) {
 L2 : var t = 2 * x;
 L3 : p.bar(t);
 L4 : } Do we need to explore all these

paths to achieve high coverage?

p.bar = U

Type-aware concolic testing reduced the generation of redundant inputs.
Generated less than 5% of the inputs as compared to conventional approaches.

Directed Test Generation to Detect Loop Inefficiencies [FSE’16]

Redundant traversal bugs : program iterates over a data structure
repeatedly without any intermediate changes

 boolean foo(Collection c1, Collection c2){
 for(Object e : c1)
 if(c2.contains(e))
 return true
 return false
}

Proposed an approach to generate tests detecting loop inefficiencies.
Detected 46 bugs across 7 Java libraries including 34 previously unknown.

Developed dynamic analysis techniques to address following research problems in the domain of
performance analysis, automated test generation, and their intersection.

How to force deterministic runtime to use
most efficient schedule, s3?

How to expose such performance bugs, and prove
their presence?

GliderJava
library

Testcases detecting
inefficient loops

Test
Generator

JavaScript
library Testcases

achieving high
coverage

Pegasus
Multithreaded

application
Barrier report

Input Schedules Execution

joint work with R. Mudduluru, Murali Krishna Ramanathan

joint work with Murali Krishna Ramanathan, Nishant Sinha

joint work with Murali Krishna Ramanathan

Techniques to improve the reliability of software applications

Monika Dhok
Advisor : Murali Krishna Ramanathan

Program Analysis

Program Analysis
Studying behaviours of the computer program regarding certain property.

Problems investigated

Program Analysis
Studying behaviours of the computer program regarding certain property.

Problems investigated
Automated Barrier Inference for Performance Improvement [ISSTA’15]  

Proposed an approach to automatically insert barriers in the program  
for performance improvement. Observed improvement ranging from 38-88%

Program Analysis
Studying behaviours of the computer program regarding certain property.

Problems investigated
Automated Barrier Inference for Performance Improvement [ISSTA’15]  

Proposed an approach to automatically insert barriers in the program  
for performance improvement. Observed improvement ranging from 38-88%

Type-aware Concolic Testing of JavaScript programs [ICSE’16] 
Type-aware concolic testing reduced the generation of redundant inputs. 
Generated upto 5% inputs as compared to the conventional approaches.

Program Analysis
Studying behaviours of the computer program regarding certain property.

Problems investigated
Automated Barrier Inference for Performance Improvement [ISSTA’15]  

Proposed an approach to automatically insert barriers in the program  
for performance improvement. Observed improvement ranging from 38-88%

Type-aware Concolic Testing of JavaScript programs [ICSE’16] 
Type-aware concolic testing reduced the generation of redundant inputs. 
Generated upto 5% inputs as compared to the conventional approaches.

Directed Test Generation to Detect Loop Inefficiencies [FSE’16] 
Proposed an approach to generate tests detecting loop inefficiencies.  
Detected 46 bugs across 7 Java libraries including 34 previously unknown.

Program Analysis
Studying behaviours of the computer program regarding certain property.

Software efficiency is very important

Software efficiency is very important

• Performance issues are hard to detect
during testing  

Software efficiency is very important

• Performance issues are hard to detect
during testing  

• These issues are found even in well
tested commercial softwares  

Software efficiency is very important

• Performance issues are hard to detect
during testing  

• These issues are found even in well
tested commercial softwares  

• Degrade application responsiveness and
user experience

Performance bugs are critical

Performance bugs are critical

• Implementation mistakes that cause inefficiency

Performance bugs are critical

• Implementation mistakes that cause inefficiency

• Difficult to catch them during compiler optimizations

Performance bugs are critical

• Implementation mistakes that cause inefficiency

• Difficult to catch them during compiler optimizations

• Fixing them can result in large speedups, thereby improving efficiency

Redundant traversal bugs

When program iterates over a data structure repeatedly without any intermediate modifications

Redundant traversal bugs

When program iterates over a data structure repeatedly without any intermediate modifications

 boolean foo(Collection c1, Collection c2){
 for(Object e : c1)
 if(c2.contains(e))
 return true
 return false
}

Redundant traversal bugs

When program iterates over a data structure repeatedly without any intermediate modifications

 boolean foo(Collection c1, Collection c2){
 for(Object e : c1)
 if(c2.contains(e))
 return true
 return false
}

Complexity :
O(size(c1) * size(c2))

Redundant traversal bugs

When program iterates over a data structure repeatedly without any intermediate modifications

 boolean foo(Collection c1, Collection c2){
 for(Object e : c1)
 if(c2.contains(e))
 return true
 return false
}

 boolean foo(Collection c1, Collection c2){
 HashSet c3 = new HashSet(c2)
 for(Object e : c1)
 if(c3.contains(e))
 return true
 return false
}

Complexity :
O(size(c1) * size(c2))

Redundant traversal bugs

When program iterates over a data structure repeatedly without any intermediate modifications

 boolean foo(Collection c1, Collection c2){
 for(Object e : c1)
 if(c2.contains(e))
 return true
 return false
}

 boolean foo(Collection c1, Collection c2){
 HashSet c3 = new HashSet(c2)
 for(Object e : c1)
 if(c3.contains(e))
 return true
 return false
}

Complexity :
O(size(c1) * size(c2))

Complexity :
O(size(c1)) + 𝝐

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

Performance tests are written by developers

 Toddler [ICSE 13]

Static analysis techniques alone are not effective

Static analysis techniques alone are not effective

Challenges :

Static analysis techniques alone are not effective

Challenges :
• How to confirm the validity of the bug?  

Static analysis techniques alone are not effective

Challenges :
• How to confirm the validity of the bug?  

• How to expose the root cause?

Static analysis techniques alone are not effective

Challenges :
• How to confirm the validity of the bug?  

• How to expose the root cause?
• Execution trace can be helpful  

Static analysis techniques alone are not effective

Challenges :
• How to confirm the validity of the bug?  

• How to expose the root cause?
• Execution trace can be helpful  

• How to detect that the performance bug
is fixed?

Challenges involved in writing performance tests

Challenges involved in writing performance tests

Virtual call resolution  
 Generating tests for all possible resolutions of method  
 invocation is not scalable

Challenges involved in writing performance tests

Virtual call resolution  
 Generating tests for all possible resolutions of method  
 invocation is not scalable

Generating appropriate context 
 Realization of the defect can be dependent on certain  
 conditions that affect the reachability of the inefficient loop

Challenges involved in writing performance tests

Virtual call resolution  
 Generating tests for all possible resolutions of method  
 invocation is not scalable

Generating appropriate context 
 Realization of the defect can be dependent on certain  
 conditions that affect the reachability of the inefficient loop

Arrangement of elements  
 Problem can only occur when data structure has large  
 elements arranged in particular fashion

Glider

We propose a novel and scalable
approach to automatically generate
tests for exposing loop
inefficiencies

Random Test
Generator

Summary Generation

Method Detection

Test Generation

Java library

Random tests

Method Summaries

Populator methodsInefficient methods

RQ1 : Effectiveness of test generation

Our approach is able to generate useful tests using random tests

Benchmark ID # Generated
tests

Bugs # New bugs # False
positives

Analysis
time (min)

Apache collections B1 80 16 9 1 45
PDFBox B2 30 6 6 0 12
Groovy B3 20 5 4 0 7
Guava B4 50 9 10 1 28
JFreeChart B5 15 3 1 4 24
Ant B6 24 6 3 1 15
Lucent B7 5 1 1 0 16

RQ2 : Comparison with randomly generated tests

Generated tests are more suitable to expose the magnitude of performance problem

RQ3 : Size of collection objects

Collection objects with 10K elements will enable detection of performance issues

Results

Results
We have implemented our approach on SOOT bytecode framework 

and evaluated it on number of libraries

Results
We have implemented our approach on SOOT bytecode framework 

and evaluated it on number of libraries

Our approach detected 46 bugs across 7 java libraries including 34  
previously unknown bugs.

Results
We have implemented our approach on SOOT bytecode framework 

and evaluated it on number of libraries

Our approach detected 46 bugs across 7 java libraries including 34  
previously unknown bugs.

Tests generated using our approach significantly outperform the  
randomly generated tests.

