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Automated Barrier Inference for Performance Improvement [ISSTA’15]
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Proposed an approach to insert barriers in the program for performance 
improvement. Observed improvement ranging from 38-88%.
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Type-aware Concolic Testing of JavaScript programs [ICSE’16]
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L1 : function bar (x, p) { 
 L2 :       var t = 2 * x;  
 L3 :       p.bar(t);  
 L4 : } Do we need to explore all these 

paths to achieve high coverage?

p.bar = U

Type-aware concolic testing reduced the generation of redundant inputs. 
Generated less than 5% of the inputs as compared to conventional approaches.

Directed Test Generation to Detect Loop Inefficiencies [FSE’16]

Redundant traversal bugs : program iterates over a data structure 
repeatedly without any intermediate changes

 boolean foo(Collection c1, Collection c2){ 
   for(Object e : c1) 
      if(c2.contains(e)) 
         return true  
  return false 
} 

Proposed an approach to generate tests detecting loop inefficiencies. 
Detected 46 bugs across 7 Java libraries including 34 previously unknown.

Developed dynamic analysis techniques to address following research problems in the domain of 
performance analysis, automated test generation, and their intersection.

How to force deterministic runtime to use  
most efficient schedule, s3?

How to expose such performance bugs, and prove 
their presence?
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Software efficiency is very important

• Performance issues are hard to detect 
during testing  

• These issues are found even in well 
tested commercial softwares  

• Degrade application responsiveness and 
user experience
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Performance bugs are critical

• Implementation mistakes that cause inefficiency

• Difficult to catch them during compiler optimizations

• Fixing them can result in large speedups, thereby improving efficiency
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When program iterates over a data structure repeatedly without any intermediate modifications 
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 boolean foo(Collection c1, Collection c2){ 
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Complexity :  
O(size(c1) * size(c2))

Complexity :  
O(size(c1)) + 𝝐
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Performance tests are written by developers

   Toddler [ICSE 13] 
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Static analysis techniques alone are not effective

Challenges : 
• How to confirm the validity of the bug?  

• How to expose the root cause?
• Execution trace can be helpful  

• How to detect that the performance bug 
is fixed?
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Challenges involved in writing performance tests

Virtual call resolution  
  Generating tests for all possible resolutions of method  
                      invocation is not scalable

Generating appropriate context 
  Realization of the defect can be dependent on certain  
                      conditions that affect the reachability of the inefficient loop

Arrangement of elements  
  Problem can only occur when data structure has large  
                      elements arranged in particular fashion



Glider

We propose a novel and scalable 
approach to automatically generate 
tests for exposing loop 
inefficiencies
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RQ1 : Effectiveness of test generation 

Our approach is able to generate useful tests using random tests

Benchmark ID # Generated 
tests

# Bugs # New bugs # False  
positives

Analysis 
time (min)

Apache collections B1 80 16 9 1 45
PDFBox B2 30 6 6 0 12
Groovy B3 20 5 4 0 7
Guava B4 50 9 10 1 28
JFreeChart B5 15 3 1 4 24
Ant B6 24 6 3 1 15
Lucent B7 5 1 1 0 16



RQ2 : Comparison with randomly generated tests

Generated tests are more suitable to expose the magnitude of performance problem



RQ3 : Size of collection objects

Collection objects with 10K elements will enable detection of performance issues
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Results
We have implemented our approach on SOOT bytecode framework 

and evaluated it on number of libraries

Our approach detected 46 bugs across 7 java libraries including 34  
previously unknown bugs. 

Tests generated using our approach significantly outperform the  
randomly generated tests.


