

Stabilization schemes for convection dominated scalar problems with different time discretizations in time-dependent domains

Shweta Srivastava and Sashikumaar Ganesan
 (shweta@cmg.cds.iisc.ac.in, sashi@cds.iisc.ac.in)

Computational Mathematics Group
 Department of Computational and Data Sciences, IISc Bangalore

OBJECTIVES

- Convection dominated convection diffusion reaction equation in time-dependent domains
- Small diffusivity induces spurious oscillations in numerical solution
- Stabilization schemes (SUPG, LPS) are considered in time-dependent domains
- ALE approach is used to handle the domain movement
- Numerical analysis with implicit Euler, Crank-Nicolson, backward-difference (BDF2) and higher order discontinuous Galerkin (dG) time discretizations

MODEL PROBLEM

Transient convection diffusion reaction equation

$$\begin{aligned} \frac{\partial u}{\partial t} - \epsilon \Delta u + \mathbf{b} \cdot \nabla u + cu &= f && \text{in } (0, T] \times \Omega_t, \\ u &= 0 && \text{on } [0, T] \times \partial \Omega_t, \\ u(0, x) &= u_0(x) && \text{in } \Omega_0, \end{aligned}$$

with

$$0 < \mu_0 \leq \mu(x) = \left(c - \frac{1}{2} \nabla \cdot \mathbf{b} \right) (t, x), \quad \forall x \in \Omega_t$$

ALE formulation Let $\hat{\Omega}$ be a reference domain

$$\mathcal{A}_t : \hat{\Omega} \rightarrow \Omega_t, \quad \mathcal{A}_t(Y) = x(Y, t), \quad t \in (0, T)$$

$$\frac{d}{dt} \int_{\Omega_t} u \, dx = \int_{\hat{\Omega}} \frac{\partial(u J_{A_t})}{\partial t} \, dY = \int_{\Omega_t} \left(\frac{\partial u}{\partial t} + \mathbf{w} \cdot \nabla u + u \nabla \cdot \mathbf{w} \right) \, dx$$

SUPG finite element space discretization

$$\begin{aligned} \frac{d}{dt} (u, v)_t + a_{SUPG}(u_h, v_h)_{h,t} &= \int_{\Omega_{h,t}} \nabla \cdot (\mathbf{w}_h u_h) v_h \, dx \\ &= \int_{\Omega_{h,t}} f v_h \, dx + \sum_{K \in \mathcal{T}_{h,t}} \delta_K \int_K f (\mathbf{b} - \mathbf{w}_h) \cdot \nabla v_h \, dK \\ a_{SUPG}(u, v)_{h,t} &= \epsilon (\nabla u, \nabla v)_{h,t} + (\mathbf{b} \cdot \nabla u, v)_{h,t} + (cu, v)_{h,t} \\ &\quad + \sum_{K \in \mathcal{T}_{h,t}} \delta_K (-\epsilon \Delta u + (\mathbf{b} - \mathbf{w}_h) \cdot \nabla u + cu, (\mathbf{b} - \mathbf{w}_h) \cdot \nabla v)_K \\ \|u\|_t^2 &= \left(\epsilon |u|_{1,t}^2 + \sum_{K \in \mathcal{T}_{h,t}} \delta_K \|(\mathbf{b} - \mathbf{w}_h) \cdot \nabla u\|_{0,K}^2 + \mu \|u\|_{0,t}^2 \right) \\ \delta_K &\leq \frac{\mu_0}{2\|c\|_{K,\infty}^2}, \quad \delta_K \leq \frac{h_K^2}{2\epsilon c_{inv}^2}, \end{aligned}$$

SUPG bilinear form satisfies: $a_{SUPG}(u_h, u_h)_{h,t} \geq \frac{1}{2} \|u_h\|_t^2$.

NUMERICAL RESULTS

Expanding Square : $\epsilon = 10^{-2}$, $\mathbf{b} = (0, 0)$, $c = 0$

$$x(Y, t) = \mathcal{A}_t(Y) = \{x_1 = Y_1(2 - \cos(20\pi t)), \quad x_2 = Y_2(2 - \cos(20\pi t))\}$$

IE

CN

dG(1)

Hemker example : $\epsilon = 10^{-8}$, $\mathbf{b} = (1, 0)$, $c = 0$

$$x(Y, t) = \mathcal{A}_t(Y) = \{x_1 = Y_1, \quad x_2 = Y_2 + 0.5 \sin(2\pi t/5)\}$$

Galerkin

SUPG/IE

SUPG/CN

REFERENCES

- [1] Sashikumaar Ganesan and Shweta Srivastava, ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: Conservative form, Applied Mathematics and Computation, (2017), 303, 128 - 145
- [2] Shweta Srivastava and Sashikumaar Ganesan, On the temporal discretizations of convection dominated convection-diffusion equations in time-dependent domains, (under review)
- [3] Shweta Srivastava and Sashikumaar Ganesan, Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains, submitted

Stabilization schemes for convection dominated scalar problems with different time discretizations in time-dependent domains

Shweta Srivastava

Research supervisor

Sashikumaar Ganesan

Department of Computational and Data Sciences CDS, (NMI),
Indian Institute of Science, Bangalore, India

EECS 2017 Symposium

April 07-08, 2017

OUTLINE

1 Finite element for convection dominated PDEs

- Governing equations
- Aim and challenges

2 ALE formulation

- Conservative and non-conservative form

3 SUPG stabilization scheme

- Stability of semi-discrete scheme
- Time discretization
- Stability estimates of fully discrete scheme

4 Numerical results

- Observations

CONVECTION-DIFFUSION-REACTION EQUATION

Aim

- numerical scheme for convection dominated scalar equations in time-dependent (moving/deforming) domains

$$\begin{aligned}\frac{\partial u}{\partial t} - \epsilon \Delta u + \mathbf{b} \cdot \nabla u + cu &= f && \text{in } (0, T] \times \Omega_t, \\ u &= 0 && \text{on } [0, T] \times \partial\Omega_t, \\ u(0, x) &= u_0(x) && \text{in } \Omega_0,\end{aligned}$$

with

$$0 < \mu_0 \leq \mu(x) = \left(c - \frac{1}{2} \nabla \cdot \mathbf{b} \right) (t, x), \quad \forall x \in \Omega_t$$

Challenges

- solution in time-dependent domain Ω_t
- $0 < \epsilon << \|\mathbf{b}\|_\infty$
- contains boundary/interior layers

u - unknown scalar, t - time, ϵ - diffusion coefficient of u , \mathbf{b} - given convective velocity, c - reaction coefficient, f - source term, u_0 - given initial value

COMPUTATIONS OF PDEs WITH SMALL DIFFUSION

Challenges

- for simplicity consider 1-d case with

$$-\epsilon u'' + bu' = 1 \text{ with } u(0) = u(1) = 0;$$

- solution with $\epsilon = 0, b = 1 \Rightarrow u(x) \notin C[0, 1]$
- solution with $\epsilon \geq 0, b = 1$ is

$$u(x) = x - \frac{e^{-\left(\frac{1-x}{\epsilon}\right)}}{1 - e^{-\frac{1}{\epsilon}}} \Rightarrow 0 = \lim_{\epsilon \rightarrow 0} \lim_{x \rightarrow 1} u(x) \neq \lim_{x \rightarrow 1} \lim_{\epsilon \rightarrow 0} u(x) = 1$$

- boundary/interior layer problems
- small diffusivity induces spurious oscillations in numerical solution
- stabilization method is considered in moving domains
- time dependent domain makes the analysis even more challenging
- often computational domain is part of the solution

Numerical scheme

- Arbitrary Lagrangian-Eulerian (ALE) approach for handling time-dependent domains
- stabilization method for spatial discretization of PDEs: SUPG, LPS
- different time discretizations: IE, CN, BDF-2, dG
- **First part:** ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: Conservative form (IE, CN time discretization)
- **Second part:** On the temporal discretizations of convection dominated convection-diffusion equations in time-dependent domains (IE, CN, BDF2 time discretization)
- **Third part:** Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains

ALE APPROACH

ALE mapping

Let $\hat{\Omega}$ be a reference domain, and define a family of bijective ALE mappings

$$\mathcal{A}_t : \hat{\Omega} \rightarrow \Omega_t, \quad \mathcal{A}_t(Y) = x(Y, t), \quad t \in (0, T)$$

For a function $v \in C^0(\Omega_t)$ on the Eulerian frame, define their corresponding function $\hat{v} \in C^0(\hat{\Omega})$ on the ALE frame by

$$\hat{v} : (0, T) \times \hat{\Omega} \rightarrow \mathbb{R}, \quad \hat{v} := v \circ \mathcal{A}_t, \quad \text{with} \quad \hat{v}(t, Y) = v(t, \mathcal{A}_t(Y))$$

Moreover, the time derivative on the ALE frame is defined as

$$\frac{\partial v}{\partial t} \Big|_Y : (0, T) \times \Omega_t \rightarrow \mathbb{R}, \quad \frac{\partial v}{\partial t} \Big|_Y(t, x) = \frac{\partial \hat{v}}{\partial t}(t, Y), \quad Y = \mathcal{A}_t^{-1}(x)$$

Apply now the chain rule to the time derivative of $v \circ \mathcal{A}_t$ on the ALE frame to get

$$\frac{\partial v}{\partial t} \Big|_Y = \frac{\partial v}{\partial t}(t, x) + \frac{\partial x}{\partial t} \Big|_Y \cdot \nabla_x v = \frac{\partial v}{\partial t} + \frac{\partial \mathcal{A}_t(Y)}{\partial t} \cdot \nabla_x v = \frac{\partial v}{\partial t} + \mathbf{w} \cdot \nabla_x v$$

where \mathbf{w} is the domain velocity.

VARIATIONAL FORM

Let $H_0^1(\Omega_t)$ be a subspace of $H^1(\Omega_t)$ in which the functions vanish on the boundary $\partial\Omega_t$. Further, the solution space be

$$V = \left\{ v \in H_0^1(\Omega_t), \quad v : (0, T] \times \Omega_t \rightarrow \mathbb{R}, \quad v = \hat{v} \circ A_t^{-1}, \quad \hat{v} \in H_0^1(\hat{\Omega}) \right\}$$

Non-conservative ALE:

For given $\hat{\Omega}$, \mathbf{b} , \mathbf{w} , c , u_0 and f , find $u \in V$ such that for all $t \in (0, T]$ and $v \in V$

$$\left(\frac{\partial u}{\partial t}, v \right)_Y + (\epsilon \nabla u, \nabla v)_t + ((\mathbf{b} - \mathbf{w}) \cdot \nabla u, v)_t + (cu, v)_t = (f, v)_t$$

Conservative ALE:

For given $\hat{\Omega}$, \mathbf{b} , \mathbf{w} , c , u_0 and f , find $u \in V$ such that for all $t \in (0, T]$ and $v \in V$

$$\frac{d}{dt} (u, v)_t + (\epsilon \nabla u, \nabla v)_t + ((\mathbf{b} - \mathbf{w}) \cdot \nabla u, v)_t + ((c - \nabla \cdot \mathbf{w}) u, v)_t = (f, v)_t$$

Semi-discrete conservative ALE-SUPG Form

For given Ω_0 , $u_h(0, x) = u_0(x)$, \mathbf{b} , \mathbf{w}_h , c , and f , find $u_h(t, x) \in V_h$ such that for all $t \in (0, T]$ and $v_h \in V_h$,

$$\begin{aligned} \frac{d}{dt} (u, v)_t + a_{SUPG}(u_h, v_h)_{h,t} - \int_{\Omega_{h,t}} \nabla \cdot (\mathbf{w}_h u_h) v_h \, dx \\ = \int_{\Omega_{h,t}} f v_h \, dx + \sum_{K \in \mathcal{T}_{h,t}} \delta_K \int_K f (\mathbf{b} - \mathbf{w}_h) \cdot \nabla v_h \, dK. \end{aligned}$$

Inconsistent SUPG is considered, where

$$\begin{aligned} a_{SUPG}(u, v)_{h,t} = \epsilon (\nabla u, \nabla v)_{h,t} + (\mathbf{b} \cdot \nabla u, v)_{h,t} + (cu, v)_{h,t} \\ + \sum_{K \in \mathcal{T}_{h,t}} \delta_K (-\epsilon \Delta u + (\mathbf{b} - \mathbf{w}_h) \cdot \nabla u + cu, (\mathbf{b} - \mathbf{w}_h) \cdot \nabla v)_K. \end{aligned}$$

Here, δ_K is the SUPG (local) stabilization parameter.

- Inconsistent SUPG as $(\mathbf{b} - \mathbf{w}_h)$ is a function of time.

$$\sum_{K \in \mathcal{T}_{h,\tau}} \int_K \frac{\partial u}{\partial t} \delta_K (\mathbf{b} - \mathbf{w}_h) \cdot \nabla v \, dK \neq \sum_{K \in \mathcal{T}_{h,\tau}} \frac{d}{dt} \int_K u \delta_K (\mathbf{b} - \mathbf{w}_h) \cdot \nabla v \, dK.$$

COERCIVITY OF BILINEAR FORM:

Define mesh dependent norm as

$$|||u|||_t^2 = \left(\epsilon |u|_{1,t}^2 + \sum_{K \in \mathcal{T}_{h,t}} \delta_K \|(\mathbf{b} - \mathbf{w}_h) \cdot \nabla u\|_{0,K}^2 + \mu |u|_{0,t}^2 \right).$$

Lemma

Let the discrete form of the assumptions be satisfied. Further, assume that the SUPG parameters satisfy

$$\delta_K \leq \frac{\mu_0}{2\|c\|_{K,\infty}^2}, \quad \delta_K \leq \frac{h_K^2}{2\epsilon c_{inv}^2},$$

where c_{inv} is a constant used in inverse inequality. Then, the SUPG bilinear form satisfies

$$a_{SUPG}(u_h, u_h)_{h,t} \geq \frac{1}{2} |||u_h|||_t^2.$$

STABILITY OF THE SEMI-DISCRETE ALE-SUPG

Lemma

The semi-discrete ALE-SUPG solution satisfies

$$\|u_h\|_{0,t}^2 + \frac{1}{2} \int_0^T \|u_h\|_t^2 dt \leq \|u_h(0)\|_{0,t}^2 + \frac{2}{\mu} \int_0^T \|f\|_{0,t}^2 dt + 2 \int_0^T \sum_{K \in \mathcal{T}_{h,t}} \delta_K \|f\|_{0,K}^2 dt,$$

which is independent of the mesh velocity \mathbf{w}_h .

Using the Euler expansion, the second term can be written as

$$\begin{aligned} \int_{\Omega_{h,t}} \frac{\partial u_h}{\partial t} \Big|_Y u_h dx &= \frac{1}{2} \frac{d}{dt} \int_{\hat{\Omega}} u_h^2 J_{A_t} dY - \frac{1}{2} \int_{\hat{\Omega}} u_h^2 \nabla \cdot \mathbf{w}_h J_{A_t} dY \\ &= \frac{1}{2} \left(\frac{d}{dt} \|u_h\|_{0,t}^2 - \int_{\Omega_{h,t}} u_h^2 \nabla \cdot \mathbf{w}_h dx \right) \end{aligned}$$

Further, applying the Cauchy-Schwarz and Young's inequalities, the proof is complete.

FULLY DISCRETE SCHEME

Temporal discretization

Let $0 = t^0 < t^1 < \dots < t^N = T$ be a decomposition of the considered time interval $[0, T]$ into N equal time intervals. Define the discrete ALE mapping for $\tau \in [t^n, t^{n+1}]$ as

$$\mathcal{A}_{h,\Delta t}(Y) = \frac{\tau - t^n}{\Delta t} \mathcal{A}_{h,t^{n+1}}(Y) + \frac{t^{n+1} - \tau}{\Delta t} \mathcal{A}_{h,t^n}(Y),$$

Further, the discrete mesh velocity becomes

$$\hat{\mathbf{w}}_h^{n+1}(Y) = \frac{\mathcal{A}_{h,t^{n+1}}(Y) - \mathcal{A}_{h,t^n}(Y)}{\Delta t}, \quad \mathbf{w}_h^{n+1} = \hat{\mathbf{w}}_h^{n+1} \circ \mathcal{A}_{h,\Delta t}^{-1}(x)$$

Geometric conservative law (GCL)

$$\int_{\Omega_{t^{n+1}}} \phi_i \phi_j \, dx - \int_{\Omega_{t^n}} \phi_i \phi_j \, dx = \int_{t^n}^{t^{n+1}} \int_{\Omega_\tau} \phi_i(x) \phi_j(x) \nabla \cdot \mathbf{w}_h(\tau) \, dx \, d\tau.$$

Since \mathbf{w}_h is piecewise constant in time, GCL becomes

$$\int_{\Omega_{t^{n+1}}} \phi_i \phi_j \, dx - \int_{\Omega_{t^n}} \phi_i \phi_j \, dx = \Delta t \int_{\Omega_{t^{n+1}/2}} \phi_i(x) \phi_j(x) \nabla \cdot \mathbf{w}_h \, dx.$$

fully discrete equation is,

$$\begin{aligned}
 & \frac{1}{\Delta t} \left[(u_h^{n+1}, v_h)_{\Omega_{h,r^{n+1}}} - (u_h^n, v_h)_{\Omega_{h,r^n}} \right] + a_{SUPG}^{n+1/2} (u_h^{n+1}, v_h) - \int_{\Omega_{h,r^{n+1/2}}} \nabla \cdot (\mathbf{w}_h u_h^{n+1}) v_h \, dx \\
 &= \int_{\Omega_{h,r^{n+1/2}}} f^{n+1/2} v_h \, dx + \left(\sum_{K \in \mathcal{T}_{h,r^{n+1/2}}} \delta_K \int_K f^{n+1/2} (\mathbf{b} - \mathbf{w}_h) \cdot \nabla v_h \, dK \right).
 \end{aligned}$$

Lemma

Assume that $\delta_K \leq \frac{\Delta t}{4}$, the discrete ALE-SUPG solution satisfies

$$\begin{aligned}
 & \|u_h^{n+1}\|_{0,r^{n+1}}^2 + \frac{\Delta t}{2} \sum_{n=0}^N \|u_h^{n+1}\|_{r^{n+1/2}}^2 \\
 & \leq \|u_h^0\|_{0,r^0}^2 + \frac{2\Delta t}{\mu} \sum_{n=0}^N \|f^{n+1/2}\|_{0,r^{n+1/2}}^2 + 2\Delta t \sum_{K \in \mathcal{T}_{h,r^{n+1/2}}} \delta_K \sum_{n=0}^N \|f^{n+1/2}\|_{0,K}^2.
 \end{aligned}$$

Unconditionally stable: No time step restriction

Lemma

Assume that $\delta_K \leq \frac{\Delta t}{4}$, then

$$\begin{aligned} \|u_h^{N+1}\|_{0,t^{N+1}}^2 + \frac{\Delta t}{4} \sum_{n=0}^N \|u_h^{n+1} + u_h^n\|_{t^{n+1/2}}^2 \\ \leq \left((1 + \Delta t \beta_2^0) \|u_h^0\|_{0,t^0}^2 + \Delta t \sum_{n=0}^N \left(\frac{2}{\mu} + \Delta t \right) \|f^{n+1/2}\|_{0,t^{n+1/2}}^2 \right) \\ \exp \left(\Delta t \sum_{n=1}^{N+1} \frac{\beta_1^n + \beta_2^n}{1 - \Delta t (\beta_1^n + \beta_2^n)} \right). \end{aligned}$$

Conditionally stable: The estimate is stable with a restriction on Δt as

$$\Delta t < \frac{1}{\beta_1^n + \beta_2^n} = \left(\|\nabla \cdot \mathbf{w}_h\|_{\infty, t^{n+1/2}} \|J_{\mathcal{A}_{t^{n+1/2}, t^{n+1}}} \|_{\infty, t^{n+1}} + \|\nabla \cdot \mathbf{w}_h\|_{\infty, t^{n+1/2}} \|J_{\mathcal{A}_{t^n, t^{n+1/2}}} \|_{\infty, t^n} \right)^{-1}$$

EXPANDING SQUARE

Let $\Omega_0 := (0, 1)^2$ be the initial (as well as reference) domain, $\epsilon = 0.01$, $\mathbf{b} = \mathbf{0}$, $c = 0$ and $u_0 = 1600 Y_1(1 - Y_1) Y_2(1 - Y_2)$. Further, the Eulerian coordinate $x(Y, t) \in \Omega_t$ is given by

$$x(Y, t) = \mathcal{A}_t(Y) = \begin{cases} x_1 = Y_1(2 - \cos(20\pi t)) \\ x_2 = Y_2(2 - \cos(20\pi t)), \end{cases} \quad Y \in \Omega_0$$

$$\begin{aligned} \frac{\partial u}{\partial t} - 0.01\Delta u - \mathbf{w} \cdot \nabla u &= 0 \\ u &= 0 \\ u(0, x) &= 1600 x_1(1 - x_1) x_2(1 - x_2). \end{aligned}$$

- The domain deformation is given by:

conservative ALE with IE: Galerkin/SUPG

non-conservative ALE with IE: Galerkin/SUPG

conservative ALE with CN: Galerkin/SUPG

non-conservative ALE with CN: Galerkin/SUPG

non-conservative ALE with BDF-2: Galerkin/SUPG

(a) dG(1)

(b) CN

- Second order dG-1 is **unconditionally** stable, while Crank-Nicolson is **conditionally** stable only.

OSCILLATING DISC IN A CHANNEL: CONSERVATIVE FORM

Define the computational domain with homogeneous Neumann condition on Γ_N as

$$\Omega_t := \{(-3, 9) \times (-3, 3)\} \setminus \bar{\Omega}_t^S, \quad u_D(x_1, x_2) = \begin{cases} 1 & \text{on } \partial\Omega_t^S, \\ 0 & \text{else} \end{cases}$$

with $\epsilon = 10^{-8}$ and $\mathbf{b}(x_1, x_2) = (1, 0)^T$, where

$$\Omega_0^S := \left\{ (Y_1, Y_2) \in \mathbb{R}^2; Y_1^2 + Y_2^2 \leq 1 \right\} \quad \text{and} \quad \Omega_t^S := \{(x_1, x_2)\} \subset \mathbb{R}^2,$$

be the reference and time-dependent circular disc with

$$x(Y, t) = \mathcal{A}_t(Y) : \begin{cases} x_1 = Y_1 \\ x_2 = Y_2 + 0.5 \sin(2\pi t/5). \end{cases}$$

- The domain deformation is given by:

PERIODICALLY OSCILLATING DISC

Contour plots of the solution at time $t = 10$: Standard Galerkin with implicit Euler, SUPG with $\delta_0 = 0.1$ and implicit Euler, SUPG with $\delta_0 = 0.1$ and Crank-Nicolson

OSCILLATING DISC

The variation in the total energy of the system over a period of time with different time discretizations are plotted

The L^2 -norm of the solution with all the time discretizations for both the conservative and non-conservative case.

Observations

- semi-discrete in space is unconditionally stable for both conservative and non-conservative case
- conservative ALE-SUPG with IE is unconditionally stable, while all other schemes are conditionally stable with Δt depending on ALE map
- non-conservative CN scheme induces high oscillations in the numerical solution compare to other IE and BDF-2 time discretizations
- solutions obtained with the IE and BDF-2 discretizations are more diffusive than the solution of CN discretization
- BDF-2 scheme is more sensitive to the stabilization parameter δ_k than the other time discretizations
- exact integration in time: stability and error estimates are independent of time step restriction
- Radau quadrature in time: conditionally stable with a time step restriction $\Delta t \leq \frac{\epsilon}{A_n(1+B_{n,2})}$

References

- S. Ganesan, S. Srivastava: “ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: Conservative form”, *Appl. Math. Comput.*
- S. Srivastava, S. Ganesan: “On the temporal discretizations of convection dominated convection-diffusion equations in time-dependent domains”, *(in revision)*
- S. Srivastava, S. Ganesan: “Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains”, *(submitted)*

Thank you for your attention!!!