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NUMERICAL RESULTS

Expanding Square : e = 1072, b = (0,0),c =0 Hemker example: c = 1078, b = (1,0),c =0
r(Y,t) = A(Y) = {x1 = Y1(2 — cos(207t)), a2 = Y5(2 — cos(207t))} r(Y,t) = A(Y)={x1 =Y1, x2=Ys+0.5sin(27t/5)}
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OUTLINE

G Finite element for convection dominated PDEs
@ Governing equations
@ Aim and challenges

ALE formulation
@ Conservative and non-conservative form

SUPG stabilization scheme

@ Stability of semi-discrete scheme

@ Time discretization

@ Stability estimates of fully discrete scheme

e Numerical results
@ Observations
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CONVECTION-DIFFUSION-REACTION EQUATION
Aim
@ numerical scheme for convection dominated scalar equations in time-dependent

(moving/deforming) domains

%feAu+b-Vu+cu

= = 7 in (0,7] x <,
u = 0 on [0, T] x 9,
u(0,x) = up(x) in Q,
with
0< o < plx)= (c— %V-b) (t,x), Vxe
Challenges

@ solution in time-dependent domain €2,
@ 0<e<<|blloo

@ contains boundary/interior layers

u - unknown scalar, 7 - time, € - diffusion coefficient of u, b - given convective velocity, c - reaction coefficient, f - source term, ug - given
initial value

Shweta Srivastava (IISc, India) FE for convection dominated scalar PDEs 3/23



COMPUTATIONS OF PDES WITH SMALL DIFFUSION

Challenges

@ for simplicity consider 1-d case with
—eu”" 4+ bu' =1 with u(0) = u(1) = 0;

@ solution withe = 0,5 = 1 = u(x) ¢ C[0, 1]
@ solution withe > 0,0 = 1is
I—x
()

u(x) =x — —— = 0= lim lim u(x) # lim lim u(x) =1
1—e¢ e—0x—1 x—1e—0

ol

boundary/interior layer problems
small diffusivity induces spurious oscillations in numerical solution
stabilization method is considered in moving domains

time dependent domain makes the analysis even more challenging

often computational domain is part of the solution
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Numerical scheme
@ Arbitrary Lagrangian-Eulerian (ALE) approach for handling time-dependent domains
@ stabilization method for spatial discretization of PDEs: SUPG, LPS
@ (different time discretizations: IE, CN, BDF-2, dG
(]

First part: ALE-SUPG finite element method for convection-diffusion problems in time-dependent
domains: Conservative form (IE, CN time discretization)

Second part: On the temporal discretizations of convection dominated convection-diffusion
equations in time-dependent domains (IE, CN, BDF2 time discretization)

@ Third part: Local projection stabilization with discontinuous Galerkin method in time applied to
convection dominated problems in time-dependent domains
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ALE APPROACH

ALE mapping
Let €2 be a reference domain, and define a family of bijective ALE mappings

AQ—=Q, AWX) =x(Y,), t€(0,T)

For a function v € CY(€2;) on the Eulerian frame, define their corresponding function v € C°(£2) on the
ALE frame by

5:(0,T)xQ—=R, d:=vod, with 1Y) =v,A(Y))
Moreover, the time derivative on the ALE frame is defined as

v

v
ot ‘Y

ov _
S (0,T) x Q% — R, EL“”:E“”’ Y=A"' ()

Apply now the chain rule to the time derivative of v o .A; on the ALE frame to get

ov _ v Ox -~ v  OA(Y) -~ ov
ot )Y T o (%) + ot ’Y Var = ot ot Var = o Vav

where w is the domain velocity.
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VARIATIONAL FORM

Let H} (£2) be a subspace of H'(£2;) in which the functions vanish on the boundary 8<2;. Further, the
solution space be

v:{veHg(Q,), vi(0,T] X% >R, v=00A", ﬁeHé(Q)}

Non—conseArvative ALE:
For given €2, b, W, ¢, ug and f, find u € V such that forallt € (0,T] andv € V

Ou
(5, v) , + (eVu, Vv): + ((b—w) - Vu, v), + (cu, v), = (f, v):

Conservatiye ALE:
For given 2, b, w, ¢, up and f, find u € V such that for all 7 € (0, T] andvevV

% (u, v), + (eVu, Vv)i + ((b—w) - Vu, v), + ((¢c=V - W)u, v), = (f, v);
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Semi-discrete conservative ALE-SUPG Form
For given Qo, u;(0,x) = up(x), b, Wy, ¢, and f, find uy(r,x) € V}, such that for all # € (0, T] and v, € Vj,

d
— (u, v), + asupc (W, vi)n, — / V- (Whup) vy, dx
dt tht
=/ fonde+ > §K/f(b—wh)~Vvth.
Qh,z KE’T},J K
Inconsistent SUPG is considered, where

asupG (U, Ve = €(Vu, V) + (b - Vu,v)p, + (ct, Vny,

+ Z Ox(—eAu+ (b—wy) - Vu+cu,(b—wy) - Vv)g.
KETh,

Here, dk is the SUPG (local) stabilization parameter.

@ Inconsistent SUPG as (b — wy,) is a function of time.

Ou d
> [ Grac—w)-Tvak £ S L [ usco—w) - Vea

KeTh,+ KE€Th,+
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COERCIVITY OF BILINEAR FORM:

Define mesh dependent norm as

2 2 2 2
alll? = { eluli, + D Skl —wi) - Vull§ g+ pllull3,
KETh,

Lemma

Let the discrete form of the assumptions be satisfied. Further, assume that the SUPG parameters satisfy

"2
ok < 7“2 ) k < —&-,
2|lellz, 0o 2ecs;

where ciyy is a constant used in inverse inequality. Then, the SUPG bilinear form satisfies

1
asupc (Un, tp)n,e > §|||“h|||12'
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STABILITY OF THE SEMI-DISCRETE ALE-SUPG

Lemma
The semi-discrete ALE-SUPG solution satisfies

1 T 2 T T
o+ 5 [ sl < Mo, + = [ 1B 42 [ 5 dlllfear

0 KeTh,

which is independent of the mesh velocity wy,.

Using the Euler expansion, the second term can be written as
o] 1d 1
/ ﬂ uhdxzf—/uﬁJA,dY—f/uﬁV-thA,dY
Qs or |y 2dt Jo 2 Ja

1fa, ., /
—2<dt||uh||o,, 5

Further, applying the Cauchy-Schwarz and Young’s inequalities, the proof is complete.

AV whdx>

t
s
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FULLY DISCRETE SCHEME

Temporal discretization

Let0 = < 1! < ... <V = T be a decomposition of the considered time interval [0, T] into N equal

time intervals. Define the discrete ALE mapping for 7 € [t",#"11] as

T—1" i+l
-Ah,At(Y) = At -Ah,tn-*—l (Y) + T-Ah,t" (Y),
Further, the discrete mesh velocity becomes
Ay w1 (Y) — Ay (Y)
il 1 ht 1 i1 —1
LANOE = cow =W e AL ()

Geometric conservative law (GCL)

/Qm+1 ¢i¢jdx_/grn ¢i ¢y dx =

Since wy, is piecewise constant in time, GCL becomes

s

m

/ & ¢jdxf/ & ¢>jdx=At/ i(x) &(x) V - W dx.
Q41 Qun Q

172
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Stability estimates for conservative ALE-SUPG with implicit Euler method

fully discrete equation is,

1 2
[ e, s = e, ] + i, vh)_/ T (w1 vy d
’ @, nt1/2
:/ 2 a4 3 /fn+1/2 (b—wy) - Vvy dK
Qh’rn+1/2 KeT ,n+1/2
Lemma

Assume that 0k < ! the discrete ALE-SUPG solution satisfies

At

1 1

||”n+ ||0,N+1 + = ZIII Z+ |H,n+1/2
n=0

2At

N
<|Iuh||0,o+f2|lf"+1/2|| anp F200 37 Sk IRk

K€7;l /2 n=0

Unconditionally stable: No time step restriction
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Stability estimate for conservative ALE-SUPG form with Crank-Nicolson method

Lemma

Assume that g < Bt then

1 1
iy + ||0,N+1+ ZlHM"Jr + |5y

N
2 n-
< <<1 )+ a3 (242 U )

n=0
N+1 n n
_l’_
e (A3 LA,
n—=1 1— At(ﬁl =+ Bz)
Conditionally stable: The estimate is stable with a restriction on At as

1 4
Ar < BB = (||V'Wh||oo,,n+1/2||JA,,,+1/2’ it oo, mtt IV - Wh||oo,,n+1/2||JAt,l’ t,,+,/2||oo,t")

v
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EXPANDING SQUARE

Let 9 := (0, 1)2 be the initial (as well as reference) domain, ¢ = 0.01,b = 0, ¢ = 0 and
up = 1600 Y, (1 — Y1) Y2(1 — Y2). Further, the Eulerian coordinate x(Y,7) € €, is given by

B | x1 =Y1(2 — cos(20m1))
MY, 0 = A(Y) = { > = Ya(2 — cos(20m1)), Y e
@ —00l1Au—w-Vu = 0
ot
u = 0
u(0,x) = 1600x; (1 —x1)x2(1 — x2).

@ The domain deformation is given by:
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conservative ALE with IE: Galerkin/SUPG

#*At = 0.01 #Galerkin
#At = 0.005 w8 =07
3305y ot nos
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A t= 0.0001 [] 20 o
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E E
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1 1.5 0.5 1 1.5
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non-conservative ALE with IE: Galerkin/SUPG
sof ! "T#At = 0.01 sof ! ! *Galerkin
WAt = 0.005 o =02
E @At = 0.0025 r .50 = 0.25
A t= 0.00125 8, = 0.5
sop HA t= 0.000625 5 =1
. A t= 0.0001 * o
Z 40 .|
E
20 1 3
k
0.5 1 1.5 0.5 1 1.5
time time
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conser
T

10
B E
204t = 0.01 ]
= 0.005
.002§ 1
A t= 0.00125
A t= 0.00001 i i
0.5 1 1.5
time
non-conservative ALE with CN:
sof ! T*at =0.005
WAt = 0.0025
r @At = 0.00125
At = 0.000625
60
M*A t = 0.0001
. F %A t = 0.00001 B}
M = u
s = =
5 4% B
200 ]
.
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Shweta Srivastava (IISc, India)

FE for convecti

vative ALE with CN: Galerkin/SUPG

20[-#Galerkin
-l = 0.0
_'5 = 0.025
48 = 0.08 ]
3 = 0.075
4“0 i i
0.5 1 1.5
time
Galerkin/SUPG
T T .
8oL #Galerkin
w8 =0.01
@5 = 0-025

= 0.05

60if
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40, 1
20| 1
L r
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time
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non-conservative ALE with BDF-2: Galerkin/SUPG
80 . , 80

#-Galorkin
R

0 I L

05 1 15 1
time time
(a) dG(1)
60 [ AL =001

=0.005

I I I
° 0.5 1 15

1 15
time time
@ Second order dG-1 is unconditionally stable, while Crank-Nicolson is conditionally stable only.
o = = = = DA
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OSCILLATING DISC IN A CHANNEL: CONSERVATIVE
FORM

Define the computational domain with homogeneous Neumann condition on I'y as

_ 1 03,
Q= {(=3,9) x (=3,3)}\ D5, up(x, ;) = { oot
0 else

with € = 10~ and b(x, %) = (1,0)7, where

Q= {(Yl,yz) ERL Y2412 < 1} and Q5 = {(x),x2)} C R?,

be the reference and time-dependent circular disc with

_ Jam=n
K, 0 = A(Y): { xy = Y5 +0.5sin(27t/5).

@ The domain deformation is given by:
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PERIODICALLY OSCILLATING DISC

Contour plots of the solution at time = 10: Standard Galerkin with implicit Euler, SUPG with §y = 0.1
and implicit Euler, SUPG with §p = 0.1 and Crank-Nicolson

-9.87 -4.20 1.47 713 128

-0.00360 0.247 0.498 0.749 1.00 -0.00468 0.246 0.498 0.749 1.00
u u
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ALE-SUPG solution with implicit Euler at t = 0.05,4,7, 10

T~ T
u u
0 025 05 078 0 025 05 075
. s — ' U —
-0.078264 1 ! -0.0016152 1

0.8 0.8

0.6 0.6
El E)

0.4 0.4

02 0.2

Shweta Srivastava (IISc, India) FE for convection dominated scalar PDEs 20/23



OSCILLATING DISC

The variation in the total energy of the system over a period of time with different time
discretizations are plotted

The L?>-norm of the solution with all the time discretizations for both the conservative and
non-conservative case.
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Observations

@ semi—discrete in space is unconditionally stable for both conservative and non-conservative case

@ conservative ALE-SUPG with IE is unconditionally stable, while all other schemes are
conditionally stable with At depending on ALE map

@ non-conservative CN scheme induces high oscillations in the numerical solution compare to other
IE and BDF-2 time discretizations

@ solutions obtained with the IE and BDF-2 discretizations are more diffusive than the solution of CN
discretization

@ BDF-2 scheme is more sensitive to the stabilization parameter J; than the other time discretizations
@ exact integration in time: stability and error estimates are independent of time step restriction

@ Radau quadrature in time: conditionally stable with a time step restriction At < A(TSBZ)
n n,

References
- S. Ganesan, S. Srivastava: “ALE-SUPG finite element method for convection-diffusion problems in time-dependent de
Conservative form ”, Appl. Math. Comput.
- S. Srivastava, S. Ganesan: “On the temporal discretizations of convection dominated convection-diffusion equations in

time-dependent domains ”, (in revision)

- S. Srivastava, S. Ganesan: “Local projection stabilization with discontinuous Galerkin method in time applied to convection
lomi; 1 problems in time-d lent domains ”, (submitted)

P

Shweta Srivastava (IISc, India) FE for convection dominated scalar PDEs 22/23



Thank you for your attention!!!
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