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OBJECTIVES

• Convection dominated convection diffusion reaction equation in time-dependent
domains

• Small diffusivity induces spurious oscillations in numerical solution

• Stabilization schemes (SUPG, LPS) are considered in time-dependent domains

• ALE approach is used to handle the domain movement

• Numerical analysis with implicit Euler, Crank-Nicolson, backward-difference
(BDF2) and higher order discontinuous Galerkin (dG) time discretizations

MODEL PROBLEM
Transient convection diffusion reaction equation

∂u

∂t
− ε∆u+ b · ∇u+ cu = f in (0, T ]× Ωt,

u = 0 on [0, T ]× ∂Ωt,
u(0, x) = u0(x) in Ω0,

with

0 < µ0 ≤ µ(x) =

(
c− 1

2
∇ · b

)
(t, x), ∀ x ∈ Ωt

ALE formulation Let Ω̂ be a reference domain

At : Ω̂→ Ωt, At(Y ) = x(Y, t), t ∈ (0,T)

d

dt

∫
Ωt

u dx =

∫
Ω̂

∂(uJAt)

∂t
dY =

∫
Ωt

(
∂u

∂t
+ w · ∇u+ u∇ ·w

)
dx

SUPG finite element space discretization

d

dt
(u, v)t + aSUPG(uh, vh)h,t −

∫
Ωh,t

∇ · (whuh) vh dx

=

∫
Ωh,t

fvh dx+
∑

K∈Th,t

δK

∫
K

f (b−wh) · ∇vh dK

aSUPG(u, v)h,t = ε(∇u,∇v)h,t + (b · ∇u, v)h,t + (cu, v)h,t

+
∑

K∈Th,t

δK(−ε∆u+ (b−wh) · ∇u+ cu, (b−wh) · ∇v)K

|||u|||2t =

ε|u|21,t +
∑

K∈Th,t

δK ||(b−wh) · ∇u||20,K + µ||u||20,t


δK ≤

µ0

2||c||2K,∞
, δK ≤

h2
K

2εc2inv
,

SUPG bilinear form satisfies: aSUPG(uh, uh)h,t ≥
1

2
|||uh|||2t .

FINITE DIFFERENCE TIME STEPPING
Implicit Euler time discretization Unconditionally stable

||un+1
h ||20,tN+1 +

∆t

2

N∑
n=0

|||un+1
h |||2tn+1/2

≤ ||u0
h||20,t0 +

2∆t

µ

N∑
n=0

||fn+1/2||20,tn+1/2 + 2∆t
∑

K∈T
h,tn+1/2

δK

N∑
n=0

||fn+1/2||20,K .

Crank-Nicolson time discretization Conditionally stable

‖uN+1
h ‖20,tN+1+

∆t

4

N∑
n=0

|||un+1
h + unh|||2tn+1/2

≤

(
(1 + ∆tβ0

2)‖u0
h‖20,t0 + ∆t

N∑
n=0

(
2

µ
+ ∆t

)
‖fn+1/2‖20,tn+1/2

)

exp

(
∆t

N+1∑
n=1

βn
1 + βn

2

1−∆t(βn
1 + βn

2 )

)
.

Backward difference time discretization Conditionally stable

||un+1
h ||20,tn+1 + ||2un+1

h − unh||20,tn + ∆t
n+1∑
i=1

|||uih(t)|||2ti

≤

(
(1 + ∆tα0

2)‖u0
h‖20,t0 + ||2u1

h − u0
h||20,t1 + ∆t

n+1∑
i=1

(
2

µ
+

∆t

2

)
‖f i‖20,ti

)

exp

(
∆t

n+1∑
i=1

2αi
1 + αi

2

1−∆t(2αi
1 + αi

2)

)
.

DISCONTINUOUS GALERKIN (DG) TIME STEPPING
dG with exact integration in time Unconditionally stable

||Uh(tN )||20,tN +

∫ tN

0

|||Uh(t)|||2LPS dt+

N−1∑
n=0

||(Uh(t+n ))− Uh(tn))||20,tn

≤ ||Uh(0)||20,t0 +
1

µ

∫ tN

0

||f(t)||20,t dt.

dG with Radau quadrature in time Conditionally stable

||Uh(tN )||20,tN +
N−1∑
n=0

Qq
n|||Uh(t)|||2LPS +

N−1∑
n=0

||(Uh(t+n ))− Uh(tn))||20,tn

≤ ||Uh(0)||20,t0 +
2

µ

N−1∑
n=0

Qq
n||f(t)||20,tn dt,

with the condition on time step ∆t given as,

An(1 +Bn,2)∆t ≤ ε, ∀ 0 ≤ n ≤ N − 1.

NUMERICAL RESULTS
Expanding Square : ε = 10−2, b = (0, 0), c = 0 Hemker example : ε = 10−8, b = (1, 0), c = 0

x(Y, t) = At(Y ) = {x1 = Y1(2− cos(20πt)), x2 = Y2(2− cos(20πt))} x(Y, t) = At(Y ) = {x1 = Y1, x2 = Y2 + 0.5 sin(2πt/5)}
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CONVECTION-DIFFUSION-REACTION EQUATION

Aim

numerical scheme for convection dominated scalar equations in time-dependent
(moving/deforming) domains

∂u
∂t
− ε∆u + b · ∇u + cu = f in (0, T]× Ωt,

u = 0 on [0, T]× ∂Ωt,
u(0, x) = u0(x) in Ω0,

with

0 < µ0 ≤ µ(x) =

(
c−

1
2
∇ · b

)
(t, x), ∀ x ∈ Ωt

Challenges

solution in time-dependent domain Ωt

0 < ε << ||b||∞
contains boundary/interior layers

u - unknown scalar, t - time, ε - diffusion coefficient of u, b - given convective velocity, c - reaction coefficient, f - source term, u0 - given
initial value
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COMPUTATIONS OF PDES WITH SMALL DIFFUSION

Challenges

for simplicity consider 1-d case with

−εu′′ + bu′ = 1 with u(0) = u(1) = 0;

solution with ε = 0, b = 1⇒ u(x) /∈ C[0, 1]

solution with ε ≥ 0, b = 1 is

u(x) = x−
e−

(
1−x
ε

)
1− e−

1
ε

⇒ 0 = lim
ε→0

lim
x→1

u(x) 6= lim
x→1

lim
ε→0

u(x) = 1

boundary/interior layer problems

small diffusivity induces spurious oscillations in numerical solution

stabilization method is considered in moving domains

time dependent domain makes the analysis even more challenging

often computational domain is part of the solution
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Numerical scheme

Arbitrary Lagrangian-Eulerian (ALE) approach for handling time-dependent domains

stabilization method for spatial discretization of PDEs: SUPG, LPS

different time discretizations: IE, CN, BDF-2, dG

First part: ALE-SUPG finite element method for convection-diffusion problems in time-dependent
domains: Conservative form (IE, CN time discretization)

Second part: On the temporal discretizations of convection dominated convection-diffusion
equations in time-dependent domains (IE, CN, BDF2 time discretization)

Third part: Local projection stabilization with discontinuous Galerkin method in time applied to
convection dominated problems in time-dependent domains
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ALE APPROACH

ALE mapping
Let Ω̂ be a reference domain, and define a family of bijective ALE mappings

At : Ω̂→ Ωt, At(Y) = x(Y, t), t ∈ (0,T)

For a function v ∈ C0(Ωt) on the Eulerian frame, define their corresponding function v̂ ∈ C0(Ω̂) on the
ALE frame by

v̂ : (0,T)× Ω̂→ R, v̂ := v ◦ At, with v̂(t, Y) = v(t,At(Y))

Moreover, the time derivative on the ALE frame is defined as

∂v
∂t

∣∣∣
Y

: (0,T)× Ωt → R,
∂v
∂t

∣∣∣
Y
(t, x) =

∂v̂
∂t

(t, Y), Y = A−1
t (x)

Apply now the chain rule to the time derivative of v ◦ At on the ALE frame to get

∂v
∂t

∣∣∣
Y

=
∂v
∂t

(t, x) +
∂x
∂t

∣∣∣
Y
· ∇xv =

∂v
∂t

+
∂At(Y)

∂t
· ∇xv =

∂v
∂t

+ w · ∇xv

where w is the domain velocity.
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VARIATIONAL FORM

Let H1
0(Ωt) be a subspace of H1(Ωt) in which the functions vanish on the boundary ∂Ωt . Further, the

solution space be

V =
{

v ∈ H1
0(Ωt), v : (0, T]× Ωt → R, v = v̂ ◦ A−1

t , v̂ ∈ H1
0(Ω̂)

}
Non-conservative ALE:
For given Ω̂, b, w, c, u0 and f , find u ∈ V such that for all t ∈ (0, T] and v ∈ V(

∂u
∂t
, v
)

Y
+ (ε∇u, ∇v)t + ((b−w) · ∇u, v)t + (cu, v)t = (f , v)t

Conservative ALE:
For given Ω̂, b, w, c, u0 and f , find u ∈ V such that for all t ∈ (0, T] and v ∈ V

d
dt

(u, v)t + (ε∇u, ∇v)t + ((b−w) · ∇u, v)t + ((c−∇ · w)u, v)t = (f , v)t
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Semi-discrete conservative ALE-SUPG Form
For given Ω0, uh(0, x) = u0(x), b, wh, c, and f , find uh(t, x) ∈ Vh such that for all t ∈ (0, T] and vh ∈ Vh,

d
dt

(u, v)t + aSUPG(uh, vh)h,t −
∫

Ωh,t

∇ · (whuh) vh dx

=

∫
Ωh,t

fvh dx +
∑

K∈Th,t

δK

∫
K

f (b− wh) · ∇vh dK.

Inconsistent SUPG is considered, where

aSUPG(u, v)h,t = ε(∇u,∇v)h,t + (b · ∇u, v)h,t + (cu, v)h,t

+
∑

K∈Th,t

δK(−ε∆u + (b− wh) · ∇u + cu, (b− wh) · ∇v)K .

Here, δK is the SUPG (local) stabilization parameter.

Inconsistent SUPG as (b− wh) is a function of time.∑
K∈Th,τ

∫
K

∂u
∂t

δK(b− wh) · ∇v dK 6=
∑

K∈Th,τ

d
dt

∫
K

u δK(b− wh) · ∇v dK.
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COERCIVITY OF BILINEAR FORM:

Define mesh dependent norm as

|||u|||2t =

ε|u|21,t +
∑

K∈Th,t

δK ||(b− wh) · ∇u||20,K + µ||u||20,t

 .

Lemma
Let the discrete form of the assumptions be satisfied. Further, assume that the SUPG parameters satisfy

δK ≤
µ0

2||c||2K,∞
, δK ≤

h2
K

2εc2
inv
,

where cinv is a constant used in inverse inequality. Then, the SUPG bilinear form satisfies

aSUPG(uh, uh)h,t ≥
1
2
|||uh|||2t .
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STABILITY OF THE SEMI-DISCRETE ALE-SUPG

Lemma
The semi-discrete ALE-SUPG solution satisfies

||uh||20,t +
1
2

∫ T

0
|||uh|||2t dt ≤ ||uh(0)||20,t +

2
µ

∫ T

0
||f ||20,t dt + 2

∫ T

0

∑
K∈Th,t

δK ||f ||20,K dt,

which is independent of the mesh velocity wh.

Using the Euler expansion, the second term can be written as∫
Ωh,t

∂uh

∂t


Y

uh dx =
1
2

d
dt

∫
Ω̂

u2
h JAt dY −

1
2

∫
Ω̂

u2
h∇ · wh JAt dY

=
1
2

(
d
dt
||uh||20,t −

∫
Ωh,t

u2
h∇ · whdx

)

Further, applying the Cauchy-Schwarz and Young’s inequalities, the proof is complete.
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FULLY DISCRETE SCHEME

Temporal discretization

Let 0 = t0 < t1 < · · · < tN = T be a decomposition of the considered time interval [0,T] into N equal
time intervals. Define the discrete ALE mapping for τ ∈ [tn, tn+1] as

Ah,∆t(Y) =
τ − tn

∆t
Ah,tn+1 (Y) +

tn+1 − τ
∆t

Ah,tn (Y),

Further, the discrete mesh velocity becomes

ŵn+1
h (Y) =

Ah,tn+1 (Y)−Ah,tn (Y)

∆t
, wn+1

h = ŵn+1
h ◦ A−1

h,∆t(x)

Geometric conservative law (GCL)∫
Ωtn+1

φi φj dx−
∫

Ωtn

φi φj dx =

∫ tn+1

tn

∫
Ωτ

φi(x) φj(x)∇ · wh(τ) dx dτ.

Since wh is piecewise constant in time, GCL becomes∫
Ωtn+1

φi φj dx−
∫

Ωtn

φi φj dx = ∆t
∫

Ω
tn+1/2

φi(x) φj(x)∇ · wh dx.
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Stability estimates for conservative ALE-SUPG with implicit Euler method

fully discrete equation is,

1
∆t

[
(un+1

h , vh)Ωh,tn+1 − (un
h, vh)Ωh,tn

]
+ an+1/2

SUPG (un+1
h , vh)−

∫
Ω

h,tn+1/2

∇ · (whun+1
h ) vh dx

=

∫
Ω

h,tn+1/2

f n+1/2vh dx +

 ∑
K∈T

h,tn+1/2

δK

∫
K

f n+1/2 (b− wh) · ∇vh dK

 .

Lemma
Assume that δK ≤ ∆t

4 , the discrete ALE-SUPG solution satisfies

||un+1
h ||20,tN+1 +

∆t
2

N∑
n=0

|||un+1
h |||2

tn+1/2

≤ ||u0
h||

2
0,t0 +

2∆t
µ

N∑
n=0

||f n+1/2||2
0,tn+1/2 + 2∆t

∑
K∈T

h,tn+1/2

δK

N∑
n=0

||f n+1/2||20,K .

Unconditionally stable: No time step restriction
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Stability estimate for conservative ALE-SUPG form with Crank-Nicolson method

Lemma
Assume that δK ≤ ∆t

4 , then

‖uN+1
h ‖2

0,tN+1 +
∆t
4

N∑
n=0

|||un+1
h + un

h|||
2
tn+1/2

≤
(

(1 + ∆tβ0
2)‖u0

h‖
2
0,t0 + ∆t

N∑
n=0

(
2
µ

+ ∆t
)
‖f n+1/2‖2

0,tn+1/2

)

exp

(
∆t

N+1∑
n=1

βn
1 + βn

2

1−∆t(βn
1 + βn

2)

)
.

Conditionally stable: The estimate is stable with a restriction on ∆t as

∆t <
1

βn
1 + βn

2
=
(
||∇ · wh||∞,tn+1/2 ||JA

tn+1/2, tn+1
||∞,tn+1 + ||∇ · wh||∞,tn+1/2 ||JA

tn, tn+1/2
||∞,tn

)−1
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EXPANDING SQUARE

Let Ω0 := (0, 1)2 be the initial (as well as reference) domain, ε = 0.01, b = 0, c = 0 and
u0 = 1600 Y1(1− Y1) Y2(1− Y2). Further, the Eulerian coordinate x(Y, t) ∈ Ωt is given by

x(Y, t) = At(Y) =

{
x1 = Y1(2− cos(20πt))
x2 = Y2(2− cos(20πt)), Y ∈ Ω0

∂u
∂t
− 0.01∆u− w · ∇u = 0

u = 0
u(0, x) = 1600 x1(1− x1) x2(1− x2).

The domain deformation is given by:
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Second order dG-1 is unconditionally stable, while Crank-Nicolson is conditionally stable only.
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OSCILLATING DISC IN A CHANNEL: CONSERVATIVE

FORM

Define the computational domain with homogeneous Neumann condition on ΓN as

Ωt := {(−3, 9)× (−3, 3)} \ Ω̄S
t , uD(x1, x2) =

{
1 on ∂ΩS

t ,

0 else

with ε = 10−8 and b(x1, x2) = (1, 0)T , where

ΩS
0 :=

{
(Y1, Y2) ∈ R2; Y2

1 + Y2
2 ≤ 1

}
and ΩS

t := {(x1, x2)} ⊂ R2,

be the reference and time-dependent circular disc with

x(Y, t) = At(Y) :

{
x1 = Y1
x2 = Y2 + 0.5 sin(2πt/5).

The domain deformation is given by:
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PERIODICALLY OSCILLATING DISC

Contour plots of the solution at time t = 10: Standard Galerkin with implicit Euler, SUPG with δ0 = 0.1
and implicit Euler, SUPG with δ0 = 0.1 and Crank-Nicolson
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ALE-SUPG solution with implicit Euler at t = 0.05, 4, 7, 10
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OSCILLATING DISC

The variation in the total energy of the system over a period of time with different time
discretizations are plotted

time
0 2 4 6 8 10

||
u

||
0

, 
tn

0

1

2

3

IE-nc
IE-c
CN-nc
CN-c
BDF-nc
BDF-c

The L2-norm of the solution with all the time discretizations for both the conservative and
non-conservative case.
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Observations

semi–discrete in space is unconditionally stable for both conservative and non-conservative case

conservative ALE-SUPG with IE is unconditionally stable, while all other schemes are
conditionally stable with ∆t depending on ALE map

non-conservative CN scheme induces high oscillations in the numerical solution compare to other
IE and BDF-2 time discretizations

solutions obtained with the IE and BDF-2 discretizations are more diffusive than the solution of CN
discretization

BDF-2 scheme is more sensitive to the stabilization parameter δk than the other time discretizations

exact integration in time: stability and error estimates are independent of time step restriction

Radau quadrature in time: conditionally stable with a time step restriction ∆t ≤ ε
An(1+Bn,2)
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Thank you for your attention!!!
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