The curriculum of the two-year M.Tech. (AI) program comprises a total of 64 credits of which 43 credits account for course work and 21 credits for project work. The course work is organized into:

- Pool A Courses (19 Credits) (Hardcore)
- Pool B Courses (Minimum 12 Credits) (Softcore)
- Recommended Electives (up to 12 Credits)

Pool A Courses: 19 credits

- E0 251 3:1 Data Structures and Algorithms
- **E1 222** 3:0 Stochastic Models and Applications OR E2 202 Random Processes
- E0 299 3:1 Computational Linear Algebra
- E0 230 3:1 Computational Methods of Optimization
- **E1 213** 3:1 Pattern Recognition and Neural Networks OR E0270 3:1 Machine Learning

Pool B Courses: (Minimum of 12 Credits)

- E1 277 3:1 Reinforcement Learning
- E1 216 3:1 Computer Vision
- **E9 241** 2:1 Digital Image Processing
- **E9 261** 3:1 Speech Information Processing
- E1 254 3:1 Game Theory
- **E1 241** 3:0 Dynamics of Linear Systems
- E0 259 3:1 Data Analytics
- E2 231 3:0 Topics in Statistical Methods
- E9 206 3:0 Digital Video: Perception and Algorithms
Project: 21 Credits
E1 299 0:21 Dissertation Project

Recommended Electives: Up to 12 Credits
(In addition to the courses listed below, Pool B courses can also be taken as recommended electives. Courses not listed here can be taken as well with the approval of the faculty advisor).

E0 265 3:1 Convex Optimization and Applications
E0 334 3:1 Deep Learning for Natural Language Processing
E0 268 3:1 Practical Data Science
DS 256 3:1 Scalable Systems for Data Science
E9 205 3:1 Machine Learning for Signal Processing
DS 222 3:1 Machine Learning with Large Data sets
DS 265 3:1 Deep Learning for Computer Vision
E0 306 3:1 Deep Learning: Theory and Practice
E0 249 3:1 Approximation Algorithms
E0 235 3:1 Cryptography
E0 238 3:1 Intelligent Agents
E2 201 3:0 Information Theory
E1 245 3:0 Online Prediction and Learning
E2 336 3:0 Foundations of Machine Learning
E2 207 3:0 Concentration Inequalities
E1 244 3:0 Detection and Estimation Theory
E1 396 3:0 Topics in Stochastic Approximation Algorithms
E2 230 3:0 Network Science and Modelling
E1 246 3:1 Natural Language Understanding
E9 253 3:0 Neural Networks and Learning Systems
CPS 313 2:1 Autonomous Navigation