

### **Division of EECS**

# **Indian Institute of Science, Bangalore**

## M.Tech. (AI) – Curriculum

The curriculum of the two-year M.Tech. (AI) program comprises a total of 64 credits of which 43 credits account for course work and 21 credits for project work. The course work is organized into:

- Pool A Courses (19 Credits) (Hardcore)
- Pool B Courses (Minimum 12 Credits) (Softcore)
- Recommended Electives (balance to bring total course Credits to a minimum of 43)

### **Pool A Courses: 19 credits**

| E0 251 | 3:1 | Data Structures and Algorithms                                               |
|--------|-----|------------------------------------------------------------------------------|
| E1 222 | 3:0 | Stochastic Models and Applications <b>OR</b> E2 202 Random Processes         |
| E0 299 | 3:1 | Computational Linear Algebra                                                 |
| E0 230 | 3:1 | Computational Methods of Optimization                                        |
| E1 213 | 3:1 | Pattern Recognition and Neural Networks <b>OR</b> E0270 3:1 Machine Learning |

# **Pool B Courses: (Minimum of 12 Credits)**

| E1 277 | 3:1 | Reinforcement Learning                   |
|--------|-----|------------------------------------------|
| E1 216 | 3:1 | Computer Vision                          |
| E9 241 | 2:1 | Digital Image Processing                 |
| E9 261 | 3:1 | Speech Information Processing            |
| E1 254 | 3:1 | Game Theory                              |
| E1 241 | 3:0 | Dynamics of Linear Systems               |
| E0 259 | 3:1 | Data Analytics                           |
| E2 231 | 3:0 | Topics in Statistical Methods            |
| E9 206 | 3:0 | Digital Video: Perception and Algorithms |

**Project: 21 Credits** 

E1 299 0:21 Dissertation Project

**Recommended Electives:** Balance to bring total course Credits to a minimum of 43 (In addition to the courses listed below, Pool B courses can also be taken as recommended electives. Courses not listed here can be taken as well with the approval of the faculty advisor).

| E0 265  | 3:1 | Convex Optimization and Applications          |
|---------|-----|-----------------------------------------------|
| E0 334  | 3:1 | Deep Learning for Natural Language Processing |
| E0 268  | 3:1 | Practical Data Science                        |
| DS 256  | 3:1 | Scalable Systems for Data Science             |
| E9 205  | 3:1 | Machine Learning for Signal Processing        |
| DS 222  | 3:1 | Machine Learning with Large Data sets         |
| DS 265  | 3:1 | Deep Learning for Computer Vision             |
| E0 306  | 3:1 | Deep Learning: Theory and Practice            |
| E0 249  | 3:1 | Approximation Algorithms                      |
| E0 235  | 3:1 | Cryptography                                  |
| E0 238  | 3:1 | Intelligent Agents                            |
| E2 201  | 3:0 | Information Theory                            |
| E1 245  | 3:0 | Online Prediction and Learning                |
| E2 336  | 3:0 | Foundations of Machine Learning               |
| E2 207  | 3:0 | Concentration Inequalities                    |
| E1 244  | 3:0 | Detection and Estimation Theory               |
| E1 396  | 3:0 | Topics in Stochastic Approximation Algorithms |
| E2 230  | 3:0 | Network Science and Modelling                 |
| E1 246  | 3:1 | Natural Language Understanding                |
| E9 253  | 3:0 | Neural Networks and Learning Systems          |
| CPS 313 | 2:1 | Autonomous Navigation                         |